class LaserScan(Spyrelet): requires = { #'wm': Bristol_771, 'pmd': PM100D } conn1 = NetworkConnection('1.1.1.2') dlc = Client(conn1) @Task() def scan(self): param=self.parameters.widget.get() filename = param['Filename'] F =open(filename+'.dat','w') f=filename+'\'.dat' F2 = open(f,'w') start_wavelength = param['Start'].magnitude*1e9 stop_wavelength = param['Stop'].magnitude*1e9 step = param['Step'].magnitude*1e9 n = param['Num Scan'] self.wv = np.arange(start_wavelength,stop_wavelength+step,step) with Client(self.conn1) as dlc: for x in range(n): xx=[] dlc.set("laser1:ctl:wavelength-set",start_wavelength) time.sleep(10) act_start = self.wm.measure_wavelength() time.sleep(2) for item in self.wv: dlc.set("laser1:ctl:wavelength-set",item) time.sleep(0.0001) xx.append(self.pmd.power.magnitude * 1000) act_stop = self.wm.measure_wavelength() print('%f,%f'%(act_start,act_stop)) wl = np.linspace(act_wavelength,act_wavelength,len(xx)) for item in xx: F.write("%f,"%item) for item in wl: F2.write("%f,"%item) F.write("\n") F2.write("\n") return @Element(name='Params') def parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start', {'type': float, 'default': 1460*1e-9, 'units':'m'}), ('Step', {'type': float, 'default': 0.01*1e-9, 'units':'m'}), ('Stop', {'type': float, 'default': 1570*1e-9, 'units':'m'}), ('Num Scan', {'type': int, 'default': 1}), ('Filename', {'type': str, 'default':'D:\\Data\\09.06.2019\\wavelengthsweep'}) # ('Amplitude', {'type': float, 'default': 1, 'units':'V'}) ] w = ParamWidget(params) return w
def _connection(self): if self.connection == 'serial': return SerialConnection(self.COM_port, loop=self.loop) elif self.connection == 'network': return NetworkConnection(self.COM_port, loop=self.loop) else: logging.warning( 'DLCProCs warning in _connection() : specify serial or network connection' )
def set(self, cmd, value): with Client(NetworkConnection(self.COM_port, timeout=5)) as client: client.set(cmd, value) set = client.get(cmd, type(value)) if set != value: func_name = sys._getframe(1).f_code.co_name logging.warning("DLCProCs warning in {0}() : ".format(func_name) \ + str(err)) return
class MonochromatorSpyrelet(Spyrelet): requires = { 'wm': Bristol_771, 'fungen': Keysight_33622A, 'SRS': SRS900, 'sp': SpectraPro, } qutag = None laser = NetworkConnection('1.1.1.2')
class Lifetime(Spyrelet): requires = { 'wm': Bristol_771 } qutag = None conn1 = NetworkConnection('1.1.1.2') #conn1 = conn1 = SerialConnection('COM1') dlc = Client(conn1) def configureQutag(self): qutagparams = self.qutag_params.widget.get() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] ##True = rising edge, False = falling edge. Final value is threshold voltage self.qutag.setSignalConditioning(start,self.qutag.SIGNALCOND_MISC,True,1) self.qutag.setSignalConditioning(stop,self.qutag.SIGNALCOND_MISC,True,0.1) self.qutag.enableChannels((start,stop)) def createHistogram(self,stoparray, timebase, bincount, period, index, wls): hist = [0]*bincount for stoptime in stoparray: binNumber = int(stoptime*timebase*bincount/(period)) if binNumber >= bincount: continue else: hist[binNumber]+=1 out_name = "D:\\Data\\10.9.2019\\film" np.savez(os.path.join(out_name,str(index)),hist,wls) #np.savez(os.path.join(out_name,str(index+40)),hist,wls) print('Data stored under File Name: ' + self.exp_parameters.widget.get()['File Name'] + str(index)) @Task() def startpulse(self, timestep=1e-9): with Client(self.conn1) as dlc: print(dlc.get("laser1:ctl:wavelength")) time.sleep(1000) self.configureQutag() qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] expparams = self.exp_parameters.widget.get() for i in range(expparams['# of points']): ##Wavemeter measurements stoparray = [] startTime = time.time() wls=[] lost = self.qutag.getLastTimestamps(True) while time.time()-startTime < expparams['Measurement Time'].magnitude: lost = self.qutag.getLastTimestamps(True) time.sleep(30*100e-3) timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) wls.append(str(self.wm.measure_wavelength())) self.createHistogram(stoparray, timebase, bincount, 100e-3,i, wls) print(i) #self.fungen.voltage[2] = self.fungen.voltage[2].magnitude + 2*dcparams['DC step size'].magnitude #time.sleep(100000) @Task() def qutagInit(self): print('qutag successfully initialized') @Element(name='Pulse parameters') def pulse_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('pulse height', {'type': float, 'default': 3, 'units':'V'}), ('pulse width', {'type': float, 'default': 500e-9, 'units':'s'}), ('period', {'type': float, 'default': 0.1, 'units':'s'}), ] w = ParamWidget(params) return w @Element(name='DC parameters') def DC_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('DC height', {'type': float, 'default': 0, 'units':'V'}), ('DC step size', {'type': float, 'default': 0.1, 'units':'V'}), ] w = ParamWidget(params) return w @Element(name='Experiment Parameters') def exp_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('# of points', {'type': int, 'default': 10}), ('Measurement Time', {'type': int, 'default': 10, 'units':'s'}), ('File Name', {'type': str}) ] w = ParamWidget(params) return w @Element(name='QuTAG Parameters') def qutag_params(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start Channel', {'type': int, 'default': 0}), ('Stop Channel', {'type': int, 'default': 1}), ('Bin Count', {'type': int, 'default': 1000}) ] w = ParamWidget(params) return w @startpulse.initializer def initialize(self): self.wm.start_data() @startpulse.finalizer def finalize(self): self.wm.stop_data() print('Lifetime measurements complete.') return @qutagInit.initializer def initialize(self): from lantz.drivers.qutools import QuTAG self.qutag = QuTAG() devType = self.qutag.getDeviceType() if (devType == self.qutag.DEVTYPE_QUTAG): print("found quTAG!") else: print("no suitable device found - demo mode activated") print("Device timebase:" + str(self.qutag.getTimebase())) return @qutagInit.finalizer def finalize(self): return
class FastHeterodyne(Spyrelet): requires = {'fungen': Keysight_33622A, 'osc': TDS5104} maxy = 0 laser = NetworkConnection('1.1.1.2') def setwv(self, wv): with Client(self.laser) as client: client.set('laser1:ctl:wavelength-set', wv) def saveData(self, x, y, index, ind): out_name = "D:\\Data\\1.16.2020\\test4" index = str(round(index, 8)) ind = '.' + str(ind) np.savez(os.path.join(out_name, str(index + ind)), x, y) print('Data stored under File Name: ' + str(index) + '.' + str(ind)) def stepDown(self, channel, scale): scales = [1.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01] i = scales.index(scale) if i + 1 < len(scales): return scales[i + 1] else: return scales[i] @Task() def startpulse(self, timestep=1e-9): params = self.pulse_parameters.widget.get() tau = params['start tau'].magnitude #self.osc.set_time(2*tau+0.4e-6) period = params['period'].magnitude repeat_unit = params['repeat unit'].magnitude pulse_width = params['pulse width'].magnitude echo = params['echo'].magnitude varwidth = pulse_width * 2 step_tau = params['step tau'].magnitude self.osc.datasource(1) self.osc.scale(1, 1) for i in range(300): self.dataset.clear() self.fungen.output[1] = 'OFF' self.fungen.output[2] = 'OFF' self.fungen.clear_mem(1) self.fungen.clear_mem(2) self.fungen.wait() ## build pulse sequence for AWG channel 1 chn1pulse = Arbseq_Class('chn1pulse', timestep) chn1pulse.delays = [0] chn1pulse.heights = [1] chn1pulse.widths = [pulse_width] chn1pulse.totaltime = pulse_width chn1pulse.nrepeats = 0 chn1pulse.repeatstring = 'once' chn1pulse.markerstring = 'highAtStartGoLow' chn1pulse.markerloc = 0 chn1pulsewidth = pulse_width chn1pulse.create_sequence() chn1dc = Arbseq_Class('chn1dc', timestep) chn1dc.delays = [0] chn1dc.heights = [0] chn1dc.widths = [repeat_unit] chn1dc.totaltime = repeat_unit chn1dc.repeatstring = 'repeat' chn1dc.markerstring = 'lowAtStart' chn1dc.markerloc = 0 chn1dcrepeats = int( (tau - 0.5 * pulse_width - pulse_width) / repeat_unit) chn1dc.nrepeats = chn1dcrepeats chn1dcwidth = repeat_unit * chn1dcrepeats print(tau, pulse_width, chn1dcrepeats) chn1dc.create_sequence() chn1pulse2 = Arbseq_Class('chn1pulse2', timestep) chn1pulse2.delays = [0] chn1pulse2.heights = [1] chn1pulse2.widths = [pulse_width * 2] chn1pulse2.totaltime = pulse_width * 2 chn1pulse2width = pulse_width * 2 chn1pulse2.nrepeats = 0 chn1pulse2.repeatstring = 'once' chn1pulse2.markerstring = 'lowAtStart' chn1pulse2.markerloc = 0 chn1pulse2.create_sequence() chn1pulse3 = Arbseq_Class('chn1pulse3', timestep) chn1pulse3.delays = [0] chn1pulse3.heights = [0] chn1pulse3.widths = [repeat_unit] chn1pulse3.totaltime = repeat_unit chn1pulse3width = echo chn1pulse3.nrepeats = echo / repeat_unit chn1pulse3.repeatstring = 'repeat' chn1pulse3.markerstring = 'lowAtStart' chn1pulse3.markerloc = 0 chn1pulse3.create_sequence() chn1dc2 = Arbseq_Class('chn1dc2', timestep) chn1dc2.delays = [0] chn1dc2.heights = [0] chn1dc2.widths = [1e-5] chn1dc2.totaltime = 1e-5 chn1dc2.repeatstring = 'repeat' chn1dc2.markerstring = 'lowAtStart' print( float( (period - chn1pulsewidth - chn1dcwidth - chn1pulse2width) / 1e-6)) chn1dc2repeats = 1e4 #int((period-chn1pulsewidth-chn1dcwidth-chn1pulse2width)/1e-6) chn1dc2.nrepeats = chn1dc2repeats chn1dc2.markerloc = 0 chn1dc2.create_sequence() self.fungen.send_arb(chn1pulse, 1) self.fungen.send_arb(chn1dc, 1) self.fungen.send_arb(chn1pulse2, 1) # self.fungen.send_arb(chn1pulse3, 1) self.fungen.send_arb(chn1dc2, 1) seq = [chn1pulse, chn1dc, chn1pulse2, chn1dc2] self.fungen.create_arbseq('twoPulse', seq, 1) self.fungen.wait() self.fungen.voltage[ 1] = params['pulse height'].magnitude + 0.000000000001 * i print(self.fungen.voltage[1]) self.fungen.output[1] = 'ON' # self.osc.set_time(tau*2+pulse_width*3-tau/20) #time.sleep(100000) # if tau>6.0e-6: # if tau>60e-6: # self.osc.scale(1,0.01) # elif tau>30.0e-6: # self.osc.scale(1,0.02) # else: # self.osc.scale(1,0.02) # if tau>100e-6: # self.osc.scale(1,0.01) # else: # self.osc.scale(1,0.02) # maxy=self.osc.measure_max(1) # print(maxy) # if maxIndex<75000: # self.osc.set_time(curTime-700e-9) curTime = float(self.osc.query_time()) # self.osc.set_time(curTime-step_tau) #print(maxy,float(self.osc.scale_query(1))) print("maxy", self.maxy) print("scale", float(self.osc.scale_query(1))) if i != 0: if self.maxy < 1 * float(self.osc.scale_query(1)): self.osc.scale( 1, self.stepDown(1, float(self.osc.scale_query(1)))) self.setwv(1535.120) time.sleep(5) self.maxy = 0 for j in range(100): self.setwv(1535.137) time.sleep(0.3 + 0.004 * j) x, y = self.osc.curv() x = np.array(x) x = x - x.min() y = np.array(y) if max(y) > self.maxy: self.maxy = max(y) self.saveData(x, y, tau, j) time.sleep(0.5) self.setwv(1535.120) time.sleep(5) #time.sleep(100000) tau = tau + step_tau curTime = float(self.osc.query_time()) self.osc.set_time(curTime + 2 * step_tau - 20e-9 * step_tau * 1e6) @Element(name='Pulse parameters') def pulse_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('pulse height', { 'type': float, 'default': 3, 'units': 'V' }), ('pulse width', { 'type': float, 'default': 5e-6, 'units': 's' }), ('period', { 'type': float, 'default': 0.1, 'units': 's' }), ('repeat unit', { 'type': float, 'default': 100e-9, 'units': 's' }), ('start tau', { 'type': float, 'default': 3e-6, 'units': 's' }), ('stop tau', { 'type': float, 'default': 10e-6, 'units': 's' }), ('step tau', { 'type': float, 'default': 1e-6, 'units': 's' }), ('echo', { 'type': float, 'default': 100e-6, 'units': 's' }), ] w = ParamWidget(params) return w @startpulse.initializer def initialize(self): self.fungen.output[1] = 'OFF' self.fungen.output[2] = 'OFF' self.fungen.clear_mem(1) self.fungen.clear_mem(2) self.fungen.wait() self.osc.set_time(20.4e-6) @startpulse.finalizer def finalize(self): #self.fungen.output[1] = 'OFF' #self.fungen.output[2] = 'OFF' print('Two Pulse measurements complete.') return
class LaserScan(Spyrelet): requires = {'wm': Bristol_771} conn1 = NetworkConnection('1.1.1.2') dlc = Client(conn1) daq = nidaqmx.Task() daq.ai_channels.add_ai_voltage_chan("Dev1/ai6") @Task() def scan(self): param = self.parameters.widget.get() filename = param['Filename'] F = open(filename + '.dat', 'w') f = filename + '\'.dat' F2 = open(f, 'w') start_wavelength = param[ 'Start'].magnitude * 1e9 # set the start wavelength stop_voltage = param['Stop'].magnitude # set the width of the piezo # scan by changign the stop voltage (the piezo scan scans from higher to # lower wavelengths) step = param['Step'].magnitude # step is also a voltage n = param['Num Scan'] # number of piezo scans performed self.vt = np.arange(0, stop_voltage, step) # voltage points over which # scan is performed self.daq.start( ) # why is the start function used here and not in other # spyrelets? with Client(self.conn1) as dlc: dlc.set("laser1:ctl:wavelength-set", start_wavelength) time.sleep(10) # take 10s to initialize the laser at the start # wavelength for x in range(n): xx = [] wl = [] dlc.set("laser1:dl:pc:voltage-set", 0) time.sleep(3) # take 3s to set the piezo voltage to 0 act_start = self.wm.measure_wavelength() for item in self.vt: dlc.set("laser1:dl:pc:voltage-set", item) time.sleep(0.5) xx.append(self.daq.read()) time.sleep(5) act_stop = self.wm.measure_wavelength() wl = np.linspace(act_start, act_stop, len(xx)) for item in xx: F.write("%f," % item) for item in wl: F2.write("%f," % item) F.write("\n") F2.write("\n") self.daq.stop() return @Element(name='Params') def parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start', { 'type': float, 'default': 1499 * 1e-9, 'units': 'm' }), ('Step', { 'type': float, 'default': 0.01, 'units': 'V' }), ('Stop', { 'type': float, 'default': 2, 'units': 'V' }), ('Num Scan', { 'type': int, 'default': 1 }), ('Filename', { 'type': str, 'default': 'D:\\Data\\CW_cavity\\09.25\\wavelengthsweep' }) # ('Amplitude', {'type': float, 'default': 1, 'units':'V'}) ] w = ParamWidget(params) return w
class LaserScan(Spyrelet): # delete if not using power meter requires = {'pmd': PM100D} conn1 = NetworkConnection('1.1.1.2') dlc = Client(conn1) daq = nidaqmx.Task() daq.ai_channels.add_ai_voltage_chan("Dev1/ai3") @Task() def scan(self): param = self.parameters.widget.get() filename = param['Filename'] F = open(filename + '.dat', 'w') f = filename + '\'.dat' F2 = open(f, 'w') start_wavelength = param['Start'].magnitude * 1e9 stop_wavelength = param['Stop'].magnitude * 1e9 step = param['Step'].magnitude * 1e9 n = param['Num Scan'] self.wv = np.arange(start_wavelength, stop_wavelength, step) self.daq.start() print('here') with Client(self.conn1) as dlc: print('here') for x in range(n): xx = [] dlc.set("laser1:ctl:wavelength-set", start_wavelength) time.sleep(8) for item in self.wv: dlc.set("laser1:ctl:wavelength-set", item) time.sleep(0.01) xx.append(self.daq.read()) #daq #xx.append(self.pmd.power.magnitude)# powermeter time.sleep(1) wl = np.linspace(start_wavelength, stop_wavelength, len(xx)) for item in xx: F.write("%f," % item) for item in wl: F2.write("%f," % item) F.write("\n") F2.write("\n") self.daq.stop() return @Element(name='Params') def parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start', { 'type': float, 'default': 1460 * 1e-9, 'units': 'm' }), ('Step', { 'type': float, 'default': 0.01 * 1e-9, 'units': 'm' }), ('Stop', { 'type': float, 'default': 1570 * 1e-9, 'units': 'm' }), ('Num Scan', { 'type': int, 'default': 1 }), ('Filename', { 'type': str, 'default': 'D:\\Data\\09.06.2019\\wavelengthsweep' }) # ('Amplitude', {'type': float, 'default': 1, 'units':'V'}) ] w = ParamWidget(params) return w
import sys import time import socket from toptica.lasersdk.client import Client, NetworkConnection from toptica.lasersdk.dlcpro.v1_6_3 import DLCpro #Provide IP adress and Port:1998 conn1 = NetworkConnection('172.30.56.206') #with Client(conn1) as client: # print(client.get('system-label', str)) # client.set('system-label', 'Please do not touch!') # #client.exec('laser1:dl:lock:close') # # Execute command with binary output stream and no return value # print(client.get('system-type',str)) # print(client.get('serial-number',str)) import base64 import sys import time from toptica.lasersdk.dlcpro.v2_0_3 import DLCpro, NetworkConnection, DeviceNotFoundError, DecopError, UserLevel script = 'OyBjaGVja3N1bSBmYzc4NDcwOWE5MTQwY2M1Mjg3ZWNiN2M1ZTAxYTQ3YQo7CihwYXJhbS1zZXQh' \ 'ICd1cHRpbWUgMTIzNCkKKGRpc3BsYXkgIkhhbGxpaGFsbG9cbiIp'
class PLThinFilm(Spyrelet): requires = { 'wm': Bristol_771, 'fungen': Keysight_33622A, 'SRS': SRS900 } qutag = None laser = NetworkConnection('1.1.1.2') xs=np.array([]) ys=np.array([]) hist=[] def configureQutag(self): qutagparams = self.qutag_params.widget.get() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] ##True = rising edge, False = falling edge. Final value is threshold voltage self.qutag.setSignalConditioning(start,self.qutag.SIGNALCOND_MISC,True,1) self.qutag.setSignalConditioning(stop,self.qutag.SIGNALCOND_MISC,True,0.1) self.qutag.enableChannels((start,stop)) def homelaser(self,start): current=self.wm.measure_wavelength() with Client(self.laser) as client: while current<start-0.001 or current>start+0.001: setting=client.get('laser1:ctl:wavelength-set', float) offset=current-start client.set('laser1:ctl:wavelength-set', setting-offset) time.sleep(3) current=self.wm.measure_wavelength() print(current, start) def createHistogram(self,stoparray, timebase, bincount, period, index, wls,out_name,extra_data=False): print('creating histogram') hist = [0]*bincount for stoptime in stoparray: # stoptime=ps # timebase = converts to seconds # bincount: # of bins specified by user # period: measurement time specified by user binNumber = int(stoptime*timebase*bincount/(period)) if binNumber >= bincount: continue print('error') else: hist[binNumber]+=1 if extra_data==False: np.savez(os.path.join(out_name,str(index)),hist,wls) if extra_data!=False: np.savez(os.path.join(out_name,str(index)),hist,wls,extra_data) #np.savez(os.path.join(out_name,str(index+40)),hist,wls) print('Data stored under File Name: ' + out_name +'\\'+str(index)+'.npz') def resetTargets(self,targets,totalShift,i,channel): print('AWG limit exceeded, resetting voltage targets') # get the current wavelength current=self.wm.measure_wavelength() # adjust all targets to be lower again # reset totalShift print('totalShift: '+str(totalShift)) newTargets=[j-totalShift for j in targets] print('newTargets') voltageTargets=newTargets totalShift=0 # bring voltage back to ideal self.fungen.offset[channel]=Q_(voltageTargets[i-1],'V') # drive to last wavelength again self.homelaser(current) wl=self.wm.measure_wavelength() return voltageTargets,totalShift,wl def reset_quench(self): """ A typical quench shows the voltage exceeding 2mV. """ qutagparams = self.qutag_params.widget.get() # vm1=qutagparams['Voltmeter Channel 1'] vm2=qutagparams['Voltmeter Channel 2'] # vs1=qutagparams['Battery Port 1'] vs2=qutagparams['Battery Port 2'] # self.SRS.clear_status() # V1=self.SRS.SIM970_voltage[vm1].magnitude self.SRS.clear_status() V2=self.SRS.SIM970_voltage[vm2].magnitude quenchfix='YES' # i=0 # while (float(V1)>=0.010): # i+=1 # print('Voltage 1 higher than 10mV, resetting') # self.SRS.SIM928_on_off[vs1]='OFF' # self.SRS.SIM928_on_off[vs2]='OFF' # self.SRS.SIM928_on_off[vs1]='ON' # self.SRS.SIM928_on_off[vs2]='ON' # print('checking Voltage 1 again') # self.SRS.clear_status() # time.sleep(1) # V1=self.SRS.SIM970_voltage[vm1].magnitude # print('Voltage 1: '+str(V1)+'V') # if i>10: # self.fungen.output[1]='OFF' # self.fungen.output[2]='OFF' # quenchfix='NO' # break i=0 while (float(V2)>=0.010): i+=1 print('Voltage 2 higher than 10mV, resetting') self.SRS.SIM928_on_off[vs1]='OFF' self.SRS.SIM928_on_off[vs2]='OFF' self.SRS.SIM928_on_off[vs1]='ON' self.SRS.SIM928_on_off[vs2]='ON' print('checking Voltage 2 again') self.SRS.clear_status() time.sleep(1) V2=self.SRS.SIM970_voltage[vm2].magnitude print('Voltage 2: '+str(V2)+'V') if i>10: self.fungen.output[1]='OFF' self.fungen.output[2]='OFF' quenchfix='NO' break return quenchfix @Task() def piezo_scan(self,timestep=100e-9): #self.fungen.output[1]='ON' piezo_params=self.piezo_parameters.widget.get() Vstart=piezo_params['voltage start'] Vstop=piezo_params['voltage end'] pts=piezo_params['scan points'] voltageTargets=np.linspace(Vstart,Vstop,pts) reversedTargets=voltageTargets[::-1] voltageTargets=reversedTargets print('voltageTargets: '+str(voltageTargets)) channel=piezo_params['AWG channel'] # turn off AWG self.fungen.output[channel]='OFF' ##Qutag Part self.configureQutag() expparams = self.exp_parameters.widget.get() wlparams = self.wl_parameters.widget.get() # drive to the offset estimated by the piezo voltage # 1MOhm impedance of laser mismatch with 50Ohm impedance of AWG # multiplies voltage 2x # 140V ~ 40GHz ~ 315pm piezo_range=(Vstop.magnitude-Vstart.magnitude)*0.315/(140)*piezo_params['Scale factor'] #pm print('piezo_range: '+str(piezo_range)+str(' nm')) wl_start=wlparams['start']-piezo_range wl_stop=wlparams['stop']+piezo_range wlpts=np.linspace(wl_start,wl_stop,pts) self.homelaser(wlparams['start']-piezo_range) print('Laser Homed!') qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] PATH="C:\\Data\\"+self.exp_parameters.widget.get()['File Name'] if PATH!="C:\\Data\\": if (os.path.exists(PATH)): print('deleting old directory with same name') os.system('rm -rf '+str(PATH)) print('making new directory') Path(PATH).mkdir(parents=True, exist_ok=True) else: print("Specify a foldername & rerun task.") print("Task will error trying to saving data.") # turn on AWG self.fungen.output[channel]='ON' last_wl=self.wm.measure_wavelength() wls=[] totalShift=0 for i in range(pts): print(i) if (voltageTargets[i]>5) or (voltageTargets[i]<-5): newTargets,newShift,wl=self.resetTargets(voltageTargets,totalShift,i,channel) voltageTargets=newTargets totalShift=newShift self.fungen.offset[channel]=Q_(voltageTargets[i],'V') wl=self.wm.measure_wavelength() counter=0 if len(wls)!=0: last_wl=np.mean(np.array(wls).astype(np.float)) print('i: '+str(i)+', initializing') while ((wl<wlpts[i]-0.0002) or (wl>wlpts[i]+0.0002)): offset=wl-wlpts[i] Voff=offset/0.315*140/(piezo_params['Scale factor']*2) if offset<0: if voltageTargets[i]+Voff<-5: newTargets,newShift,wl=self.resetTargets(voltageTargets,totalShift,i,channel) voltageTargets=newTargets totalShift=newShift print('AWG limit exceeded, resetting voltage targets') else: newTargets=[j+Voff for j in voltageTargets] voltageTargets=newTargets self.fungen.offset[channel]=Q_(newTargets[i],'V') time.sleep(3) wl=self.wm.measure_wavelength() counter+=Voff totalShift+=Voff else: if voltageTargets[i]+Voff>5: newTargets,newShift,wl=self.resetTargets(voltageTargets,totalShift,i,channel) voltageTargets=newTargets totalShift=newShift print('AWG limit exceeded, resetting voltage targets') else: newTargets=[j+Voff for j in voltageTargets] voltageTargets=newTargets self.fungen.offset[channel]=Q_(newTargets[i],'V') time.sleep(3) wl=self.wm.measure_wavelength() counter+=Voff totalShift+=Voff print('taking data') print('current target wavelength: '+str(wlpts[i])) print('current set voltage: '+str(voltageTargets[i])) print('actual wavelength: '+str(self.wm.measure_wavelength())) time.sleep(1) ##Wavemeter measurements stoparray = [] startTime = time.time() wls=[] lost = self.qutag.getLastTimestamps(True) counter2=0 looptime=startTime while looptime-startTime < expparams['Measurement Time'].magnitude: loopstart=time.time() # get the lost timestamps lost = self.qutag.getLastTimestamps(True) # wait half a milisecond time.sleep(5*0.1) # get thte timestamps in the last half milisecond timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) wl=self.wm.measure_wavelength() wls.append(str(wl)) looptime+=time.time()-loopstart #print('i: '+str(i)+', looptime-startTime: '+str(looptime-startTime)) quenchfix=self.reset_quench() if quenchfix!='YES': print('SNSPD quenched and could not be reset') self.fungen.output[1]='OFF' self.fungen.output[2]='OFF' endloop while ((wl<wlpts[i]-0.0002) or (wl>wlpts[i]+0.0002)) and (time.time()-startTime < expparams['Measurement Time'].magnitude): offset=wl-wlpts[i] Voff=offset/0.315*140/(piezo_params['Scale factor']*2) if offset<0: if voltageTargets[i]+Voff<-5: break else: newTargets=[j+Voff for j in voltageTargets] voltageTargets=newTargets self.fungen.offset[channel]=Q_(newTargets[i],'V') time.sleep(3) wl=self.wm.measure_wavelength() counter2+=Voff totalShift+=Voff else: if voltageTargets[i]+Voff>5: break else: newTargets=[j+Voff for j in voltageTargets] voltageTargets=newTargets self.fungen.offset[channel]=Q_(newTargets[i],'V') time.sleep(3) wl=self.wm.measure_wavelength() counter2+=Voff totalShift+=Voff print('actual wavelength: '+str(wl)) print('targets shift during measurement: '+str(counter2)+'V') self.createHistogram(stoparray, timebase, bincount, expparams['AWG Pulse Repetition Period'].magnitude,i, wls, "C:\\Data\\"+self.exp_parameters.widget.get()['File Name']) # turn off AWG self.fungen.output[channel]='OFF' @Task() def startpulse(self, timestep=100e-9): self.fungen.output[1]='OFF' #self.fungen.output[2]='OFF' self.SRS.SIMmodule_on[6] ##Turn on the power supply of the SNSPD time.sleep(3) ##wait 1s to turn on the SNSPD ##Qutag Part self.configureQutag() expparams = self.exp_parameters.widget.get() wlparams = self.wl_parameters.widget.get() self.homelaser(wlparams['start']) print('Laser Homed!') qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] self.fungen.frequency[1]=expparams['AWG Pulse Frequency'] self.fungen.voltage[1]=3.5 self.fungen.offset[1]=1.75 self.fungen.phase[1]=0 self.fungen.pulse_width[1]=expparams['AWG Pulse Width'] self.fungen.waveform[1]='PULS' self.fungen.output[1]='ON' #PATH="C:\\Data\\12.18.2020_ffpc\\"+self.exp_parameters.widget.get()['File Name']+"\\motor_scan" PATH="Q:\\Data\\5.28.2021_ffpc\\"+self.exp_parameters.widget.get()['File Name'] print('here') print('PATH: '+str(PATH)) if PATH!="Q:\\Data\\5.28.2021_ffpc\\": if (os.path.exists(PATH)): print('deleting old directory with same name') os.system('rm -rf '+str(PATH)) print('making new directory') Path(PATH).mkdir(parents=True, exist_ok=True) #os.mkdir(PATH) else: print("Specify a foldername & rerun task.") print("Task will error trying to saving data.") wlTargets=np.linspace(wlparams['start'],wlparams['stop'],expparams['# of points']) print('wlTargets: '+str(wlTargets)) for i in range(expparams['# of points']): print(i) with Client(self.laser) as client: setting=client.get('laser1:ctl:wavelength-set', float) client.set('laser1:ctl:wavelength-set', wlTargets[i]) wl=self.wm.measure_wavelength() while ((wl<wlTargets[i]-0.001) or (wl>wlTargets[i]+0.001)): print('correcting for laser drift') self.homelaser(wlTargets[i]) wl=self.wm.measure_wavelength() print('current target wavelength: '+str(wlTargets[i])) print('actual wavelength: '+str(self.wm.measure_wavelength())) time.sleep(1) print('taking data') print('current target wavelength: '+str(wlTargets[i])) print('actual wavelength: '+str(self.wm.measure_wavelength())) time.sleep(1) ##Wavemeter measurements stoparray = [] startTime = time.time() wls=[] lost = self.qutag.getLastTimestamps(True) #counter2=0 looptime=startTime while looptime-startTime < expparams['Measurement Time'].magnitude: loopstart=time.time() # get the lost timestamps lost = self.qutag.getLastTimestamps(True) # wait half a milisecond time.sleep(5*0.1) # # get thte timestamps in the last half milisecond timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) wl=self.wm.measure_wavelength() wls.append(str(wl)) looptime+=time.time()-loopstart print('i: '+str(i)+', looptime-startTime: '+str(looptime-startTime)) # quenchfix=self.reset_quench() # if quenchfix!='YES': # print('SNSPD quenched and could not be reset') # # self.fungen.output[1]='OFF' # self.fungen.output[2]='OFF' # endloop while ((wl<wlTargets[i]-0.001) or (wl>wlTargets[i]+0.001)) and (time.time()-startTime < expparams['Measurement Time'].magnitude): print('correcting for laser drift') self.homelaser(wlTargets[i]) wl=self.wm.measure_wavelength() print('actual wavelength: '+str(wl)) #print('I am here') self.createHistogram(stoparray, timebase, bincount, expparams['AWG Pulse Repetition Period'].magnitude,str(i), wls,PATH) # self.createHistogram(stoparray, timebase, bincount,period,str(i), # wls,PATH,savefreqs) self.fungen.output[1]='OFF' self.SRS.SIMmodule_off[6] ##turn off the SNSPD power suppy after the measurement #@Task() #def spectralDiffusion_wRFsource(self): """ Task to measure spectral diffusion on timescales < T1. Assumes that 1 channel of the keysight AWG is sending a sine wave to an EOM. The amplitude of the RF drive for the EOM is set such that the sidebands have an equal amplitude to the pump beam. This tasks sweeps the frequency of the sine wave (separation of the EOM sidebands) while collecting PL, which can be used to determine the spectral diffusion linewidth since the saturation of the ions will be determined by how much the sidebands overlap with the spectral diffusion lineshape. This task is good for modulating between 1MHz and 200MHz. JDSU EOM amplifier has nonlinear performance below 1MHz (amplification increases), but the N5181A works down to 100kHz if desired. """ # get the parameters for the experiment from the widget """ SD_wRFparams=self.SD_wRFparams.widget.get() startFreq=SD_wRFparams['Start frequency'] stopFreq=SD_wRFparams['Stop frequency'] power=SD_wRFparams['RF Power'] runtime=SD_wRFparams['Runtime'] wl=SD_wRFparams['Wavelength'] points=SD_wRFparams['# of points'] period=SD_wRFparams['Period'] foldername=self.SD_wRFparams.widget.get()['File Name'] # convert the period & runtime to floats period=period.magnitude runtime=runtime.magnitude # set the amplitude of the RF signal self.source.set_RF_Power(power) # home the laser self.configureQutag() self.homelaser(wl) print('Laser Homed!') ##Qutag Part qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] PATH="D:\\Data\\"+foldername if PATH!="D:\\Data\\": if (os.path.exists(PATH)): print('deleting old directory with same name') os.system('rm -rf '+str(PATH)) print('making new directory') Path(PATH).mkdir(parents=True, exist_ok=True) # make a vector containing all the frequency setpoints for the EOM freqs=np.linspace(startFreq,stopFreq,points) # now loop through all the set frequencies of the EOM modulation # and record the PL on the qutag # turn on the RF source & set it in CW mode self.source.FM_ON() self.source.set_CW_mode() for i in range(points): #set the frequency on the RF source self.source.set_CW_Freq(freqs[i]) # want to actively stabilize the laser frequency since it can # drift on the MHz scale with Client(self.laser) as client: setting=client.get('laser1:ctl:wavelength-set', float) client.set('laser1:ctl:wavelength-set', wl) currentwl=self.wm.measure_wavelength() while ((currentwl<wl-0.001) or (currentwl>wl+0.001)): print('correcting for laser drift') self.homelaser(wl) currentwl=self.wm.measure_wavelength() print('current target wavelength: '+str(wl)) print('actual wavelength: '+str(currentwl)) time.sleep(1) print('taking data') print('current frequency: '+str(freqs[i])) print('current target wavelength: '+str(wl)) print('actual wavelength: '+str(self.wm.measure_wavelength())) time.sleep(1) stoparray = [] startTime = time.time() wls=[] savefreqs=[] lost = self.qutag.getLastTimestamps(True) looptime=startTime while looptime-startTime < runtime: loopstart=time.time() # get the lost timestamps lost = self.qutag.getLastTimestamps(True) # wait half a milisecond time.sleep(5*0.1) # get thte timestamps in the last half milisecond timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) currentwl=self.wm.measure_wavelength() wls.append(str(currentwl)) savefreqs.append(float(freqs[i])) looptime+=time.time()-loopstart while ((currentwl<wl-0.001) or (currentwl>wl+0.001)) and (time.time()-startTime < runtime): print('correcting for laser drift') self.homelaser(wl) currentwl=self.wm.measure_wavelength() print('actual wavelength: '+str(currentwl)) self.createHistogram(stoparray, timebase, bincount,period,str(i), wls,PATH,savefreqs) # turnn off the RF output of the N5181A whenn done self.source.RF_OFF() """ @Task() def spectralDiffusion_wAWG(self): """ Task to measure spectral diffusion on timescales < T1. Uses the Agilent N5181A RF source to send a sine wave to the phase EOM. The amplitude of the RF drive for the EOM is set such that the sidebands have an equal amplitude to the pump beam (Calibrated on 11/19/20 to be 6Vpp for the JDSU phase EOM). This tasks sweeps the frequency of the sine wave (separation of the EOM sidebands) while collecting PL, which can be used to determine the spectral diffusion linewidth since the saturation of the ions will be determined by how much the sidebands overlap with the spectral diffusion lineshape. The Keysight AWG only works up to 80MHz. Could potentially modify code to use Siglent AWG which can go up to 120MHz """ self.fungen.output[1]='OFF' self.fungen.output[2]='OFF' # some initialization of the function generator self.fungen.clear_mem(1) self.fungen.clear_mem(2) self.fungen.wait() #self.fungen.output[1]='ON' self.SRS.SIMmodule_on[6] ##Turn on the power supply of the SNSPD time.sleep(1) ##wait 1s to turn on the SNSPD # get the parameters for the experiment from the widget SD_wAWGparams=self.SD_wAWGparams.widget.get() startFreq=SD_wAWGparams['Start frequency'] stopFreq=SD_wAWGparams['Stop frequency'] EOMvoltage=SD_wAWGparams['EOM voltage'] runtime=SD_wAWGparams['Runtime'] EOMchannel=SD_wAWGparams['EOM channel'] Pulsechannel=SD_wAWGparams['Pulse channel'] Pulsefreq=SD_wAWGparams['Pulse Frequency'] Pulsewidth=SD_wAWGparams['Pulse Width'] period=SD_wAWGparams['Pulse Repetition Period'] wl=SD_wAWGparams['Wavelength'] points=SD_wAWGparams['# of points'] foldername=SD_wAWGparams['File Name'] # convert the period & runtime to floats period=period.magnitude runtime=runtime.magnitude self.fungen.clear_mem(EOMchannel) self.fungen.clear_mem(Pulsechannel) self.fungen.waveform[Pulsechannel]='PULS' self.fungen.waveform[EOMchannel]='SIN' # set the sine wave driving the EOM on the other channel self.fungen.waveform[EOMchannel]='SIN' self.fungen.voltage[EOMchannel]=EOMvoltage self.fungen.offset[EOMchannel]=0 self.fungen.phase[EOMchannel]=0 self.fungen.waveform[Pulsechannel]='PULS' self.fungen.frequency[Pulsechannel]=Pulsefreq self.fungen.voltage[Pulsechannel]=3.5 self.fungen.offset[Pulsechannel]=1.75 self.fungen.phase[Pulsechannel]=0 self.fungen.pulse_width[Pulsechannel]=Pulsewidth self.fungen.output[EOMchannel]='ON' self.fungen.output[Pulsechannel]='ON' # home the laser self.configureQutag() self.homelaser(wl) print('Laser Homed!') ##Qutag Part qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] PATH="C:\\Data\\12.29.2020_ffpc\\SD0.1mW20dBatt195227GHz\\"+str(foldername) print('PATH: '+str(PATH)) if PATH!="C:\\Data\\12.29.2020_ffpc\\SD0.1mW20dBatt195227GHz\\": if (os.path.exists(PATH)): print('deleting old directory with same name') os.system('rm -rf '+str(PATH)) print('PATH: '+str(PATH)) print('making new directory') Path(PATH).mkdir(parents=True, exist_ok=True) else: print("Specify a foldername & rerun task.") print("Task will error trying to saving data.") # make a vector containing all the frequency setpoints for the EOM freqs=np.linspace(startFreq,stopFreq,points) # now loop through all the set frequencies of the EOM modulation # and record the PL on the qutag for i in range(points): self.fungen.frequency[EOMchannel]=freqs[i] # want to actively stabilize the laser frequency since it can # drift on the MHz scale with Client(self.laser) as client: setting=client.get('laser1:ctl:wavelength-set', float) client.set('laser1:ctl:wavelength-set', wl) currentwl=self.wm.measure_wavelength() while ((currentwl<wl-0.001) or (currentwl>wl+0.001)): print('correcting for laser drift') self.homelaser(wl) currentwl=self.wm.measure_wavelength() print('current target wavelength: '+str(wl)) print('actual wavelength: '+str(currentwl)) time.sleep(1) print('taking data') print('current frequency: '+str(freqs[i])) print('current target wavelength: '+str(wl)) print('actual wavelength: '+str(self.wm.measure_wavelength())) time.sleep(1) stoparray = [] startTime = time.time() wls=[] savefreqs=[] lost = self.qutag.getLastTimestamps(True) looptime=startTime while looptime-startTime < runtime: loopstart=time.time() # get the lost timestamps lost = self.qutag.getLastTimestamps(True) # wait half a milisecond time.sleep(5*0.1) # get thte timestamps in the last half milisecond timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) currentwl=self.wm.measure_wavelength() wls.append(str(currentwl)) savefreqs.append(float(freqs[i])) looptime+=time.time()-loopstart # quenchfix=self.reset_quench() # if quenchfix!='YES': # print('SNSPD quenched and could not be reset') # self.fungen.output[1]='OFF' # self.fungen.output[2]='OFF' # endloop while ((currentwl<wl-0.001) or (currentwl>wl+0.001)) and (time.time()-startTime < runtime): print('correcting for laser drift') self.homelaser(wl) currentwl=self.wm.measure_wavelength() print('actual wavelength: '+str(currentwl)) self.createHistogram(stoparray, timebase, bincount,period,str(i),wls,PATH,savefreqs) self.fungen.output[EOMchannel]='OFF' ##turn off the AWG for both channels self.fungen.output[Pulsechannel]='OFF' self.SRS.SIMmodule_off[6] ##turn off the SNSPD power suppy after the measurement @Task() def qutagInit(self): print('qutag successfully initialized') @Element(name='Wavelength parameters') def wl_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, # ('start', {'type': float, 'default': 1535.665}), ('start', {'type': float, 'default': 1535.527}), ('stop', {'type': float, 'default': 1535.685}) # ('stop', {'type': float, 'default': 1535.61}) ] w = ParamWidget(params) return w @Element(name='Piezo scan parameters') def piezo_parameters(self): params=[ ('voltage start',{'type': float,'default':-3,'units':'V'}), ('voltage end',{'type': float,'default':3,'units':'V'}), ('scan points',{'type':int,'default':100}), ('AWG channel',{'type':int,'default':0}), ('Scale factor',{'type':float,'default':2}) ] w=ParamWidget(params) return w @Element(name='Experiment Parameters') def exp_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('# of points', {'type': int, 'default': 40}), ('Measurement Time', {'type': int, 'default': 180, 'units':'s'}), ('File Name', {'type': str}), ('AWG Pulse Repetition Period',{'type': float,'default': 2e-3,'units':'s'}), ('AWG Pulse Frequency',{'type': int,'default': 500,'units':'Hz'}), ('AWG Pulse Width',{'type': float,'default': 300e-9,'units':'s'}), ] w = ParamWidget(params) return w @Element(name='QuTAG Parameters') def qutag_params(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start Channel', {'type': int, 'default': 0}), ('Stop Channel', {'type': int, 'default': 2}), ('Bin Count', {'type': int, 'default': 1000}), # ('Voltmeter Channel 1',{'type':int,'default':1}), ('Voltmeter Channel 2',{'type':int,'default':2}), # ('Battery Port 1',{'type':int,'default':5}), ('Battery Port 2',{'type':int,'default':6}) ] w = ParamWidget(params) return w @Element(name='Spectral diffusion experiment parameters') def SD_wAWGparams(self): """ Widget containing the parameters used in the spectral diffusion experiment. Default EOM voltage calibrated by Christina and Yizhong on 11/19/20. (rough estimate for equal amplitude sidebands) """ params=[ ('Start frequency',{'type':float,'default':3.1e6,'units':'Hz'}), ('Stop frequency',{'type':float,'default':3.3e6,'units':'Hz'}), ('EOM voltage',{'type':float,'default':6,'units':'V'}), ('Runtime',{'type':float,'default':300,'units':'s'}), ('EOM channel',{'type':int,'default':1}), ('Pulse channel',{'type':int,'default':2}), ('Pulse Repetition Period',{'type': float,'default': 0.001,'units':'s'}), ('Pulse Frequency',{'type': int,'default': 1000,'units':'Hz'}), ('Pulse Width',{'type': float,'default': 500e-9,'units':'s'}), ('Wavelength',{'type':float,'default':1535.61}), ('# of points',{'type':int,'default':2}), ('File Name',{'type':str}), ] w=ParamWidget(params) return w #@Element(name='Spectral diffusion experiment parameters') #def SD_wRFparams(self): """ Widget containing the parameters used in the spectral diffusion experiment. Default EOM voltage calibrated by Christina and Yizhong on 11/19/20. (rough estimate for equal amplitude sidebands) """ """ params=[ ('Start frequency',{'type':float,'default':5e6,'units':'Hz'}), ('Stop frequency',{'type':float,'default':200e6,'units':'Hz'}), ('RF Power',{'type':float,'default':-1.30,'units':'dBm'}), ('Runtime',{'type':float,'default':10,'units':'s'}), ('Wavelength',{'type':float,'default':1536.480}), ('Period',{'type':float,'default':100e-3,'units':'s'}), ('# of points',{'type':int,'default':40}), ('File Name',{'type':str}), ] w=ParamWidget(params) return w """ @startpulse.initializer def initialize(self): self.wm.start_data() @startpulse.finalizer def finalize(self): self.wm.stop_data() print('Lifetime measurements complete.') return @qutagInit.initializer def initialize(self): from lantz.drivers.qutools import QuTAG self.qutag = QuTAG() devType = self.qutag.getDeviceType() print('devType: '+str(devType)) if (devType == self.qutag.DEVTYPE_QUTAG): print("found quTAG!") else: print("no suitable device found - demo mode activated") print("Device timebase:" + str(self.qutag.getTimebase())) return @qutagInit.finalizer def finalize(self): return
def main(): if 1: with DLCpro(NetworkConnection('192.168.1.205')) as dlcpro: #client.exec('buzzer:play "A B C D E G F E D F E D C E D C"') #client.exec('buzzer:play "A A A A A A E E H E H E AAAA"') #client.exec('laser1:dl:lock:close') #client.exec('laser1:dl:lock:open') #old_voltage=dlcpro.laser1.dl.pc.voltage_act.get() #v_locked=dlcpro.laser1.dl.pc.voltage_act.get() #dlcpro.laser1.dl.lock.open() #dlcpro.laser1.dl.pc.voltage_set.set(v_locked) for i in range(10): print(dlcpro.laser1.dl.lock.pid1.values()) time.sleep(0.2) #dlcpro.laser1.dl.lock.close() if 0: my_jump = -2.30 old_setvolt = dlcpro.laser1.dl.pc.voltage_set.get() #print(old_setvolt) #old_actvolt=dlcpro.laser1.dl.pc.voltage_act.get() #new_actvolt=old_actvolt+my_jump #new_setvolt=old_actvolt+my_jump new_setvolt = old_setvolt + my_jump #print('old:',old_actvolt) print('old:', old_setvolt) print('new:', new_setvolt) dlcpro.laser1.dl.pc.voltage_set.set(new_setvolt) time.sleep(0.2) dlcpro.laser1.dl.lock.close() if 0: with DLCpro(NetworkConnection('192.168.1.205')) as dlcpro: #client.exec('buzzer:play "A B C D E G F E D F E D C E D C"') #client.exec('buzzer:play "A A A A A A E E H E H E AAAA"') #client.exec('laser1:dl:lock:close') #client.exec('laser1:dl:lock:open') #old_voltage=dlcpro.laser1.dl.pc.voltage_act.get() my_jump = +2.3 old_setvolt = dlcpro.laser1.dl.pc.voltage_set.get() old_actvolt = dlcpro.laser1.dl.pc.voltage_act.get() new_actvolt = old_actvolt + my_jump new_setvolt = old_setvolt + my_jump dlcpro.laser1.dl.pc.voltage_set.set(new_setvolt) print('jump 1 of 4 done, wait 3 sec.') time.sleep(3) temp_actvolt = dlcpro.laser1.dl.pc.voltage_act.get() delta = new_actvolt - temp_actvolt new_setvolt = new_setvolt - delta dlcpro.laser1.dl.pc.voltage_set.set(new_setvolt) print('jump 2 of 4 done, wait 2 sec.') time.sleep(2) temp_actvolt = dlcpro.laser1.dl.pc.voltage_act.get() delta = new_actvolt - temp_actvolt new_setvolt = new_setvolt - delta dlcpro.laser1.dl.pc.voltage_set.set(new_setvolt) print('jump 3 of 4 done, wait 1 sec.') time.sleep(1) temp_actvolt = dlcpro.laser1.dl.pc.voltage_act.get() delta = new_actvolt - temp_actvolt new_setvolt = new_setvolt - delta dlcpro.laser1.dl.pc.voltage_set.set(new_setvolt) print('jump 4 done') #print(old_setvolt) #76.539430 #74.309430 #72.263703 #71.4 #74.0 #76.3 #78.6 #80.9 #83.1 #print(old_actvolt) #delta=old_actvolt-old_setvolt #print(delta) #new_volt=old_setvolt+2.3+delta #new_volt=old_setvolt+0.1 #print(new_volt) #dlcpro.laser1.dl.pc.voltage_set.set(new_volt) #print(dlcpro.laser1.dl.lock.state.get()) if 0: with Client(NetworkConnection('192.168.1.205')) as client: #client.laser1.dl.pc.set.voltage('80.018000') #client.laser1.dl.pc.voltage.set('80.018000') #client.exec('laser1.dl.pc.set.voltage "80.018000"') client.exec('laser1:dl:lock:close')
#print(new_volt) #dlcpro.laser1.dl.pc.voltage_set.set(new_volt) #print(dlcpro.laser1.dl.lock.state.get()) if 0: with Client(NetworkConnection('192.168.1.205')) as client: #client.laser1.dl.pc.set.voltage('80.018000') #client.laser1.dl.pc.voltage.set('80.018000') #client.exec('laser1.dl.pc.set.voltage "80.018000"') client.exec('laser1:dl:lock:close') #client.exec('laser1:dl:lock:open') if 0: if 0: with DLCpro(NetworkConnection('192.168.1.205')) as dlcpro: # Retrieve scan, lock raw data from device scope_data = extract_float_arrays('xyY', dlcpro.laser1.scope.data.get()) raw_lock_candidates = dlcpro.laser1.dl.lock.candidates.get() lock_candidates = extract_lock_points('clt', raw_lock_candidates) lock_state = extract_lock_state(raw_lock_candidates) # Create double y axis plot fig, laxis = pyplot.subplots() fig.suptitle('DLC pro Scope Output') ch1_available = dlcpro.laser1.scope.channel1.signal.get( ) != -3 # Signal is 'none' ch2_available = dlcpro.laser1.scope.channel2.signal.get() != -3
class Contour(Spyrelet): requires = { 'fungen': Keysight_33622A, 'wm': Bristol_771 } qutag = None laser = NetworkConnection('1.1.1.1') def configureQutag(self): qutagparams = self.qutag_params.widget.get() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] ##True = rising edge, False = falling edge. Final value is threshold voltage self.qutag.setSignalConditioning(start,self.qutag.SIGNALCOND_MISC,True,1) self.qutag.setSignalConditioning(stop,self.qutag.SIGNALCOND_MISC,True,0.1) self.qutag.enableChannels((start,stop)) def homelaser(self,start): current=self.wm.measure_wavelength() with Client(self.laser) as client: while current<start-0.001 or current>start+0.001: setting=client.get('laser1:ctl:wavelength-set', float) offset=current-start client.set('laser1:ctl:wavelength-set', setting-offset) time.sleep(3) current=self.wm.measure_wavelength() print(current, start) def createHistogram(self,stoparray, timebase, bincount, period, index, wls): hist = [0]*bincount for stoptime in stoparray: binNumber = int(stoptime*timebase*bincount/(period)) if binNumber >= bincount: continue else: hist[binNumber]+=1 out_name = "D:\\Data\\8.30.2019\\0.1" np.savez(os.path.join(out_name,str(index)),hist,wls) #np.savez(os.path.join(out_name,str(index+40)),hist,wls) print('Data stored under File Name: ' + self.exp_parameters.widget.get()['File Name'] + str(index)) @Task() def startpulse(self, timestep=1e-9): self.fungen.output[1] = 'OFF' self.fungen.output[2] = 'OFF' self.fungen.clear_mem(1) self.fungen.clear_mem(2) params = self.pulse_parameters.widget.get() pre1 = Arbseq_Class('pre1', timestep) pre1.delays = [0] pre1.heights = [0] pre1.widths = [params['pulse width'].magnitude] pre1.totaltime = params['pulse width'].magnitude pre1.nrepeats = 1000 pre1.repeatstring = 'repeat' pre1.markerstring = 'lowAtStart' pre1.markerloc = 0 pre1.create_sequence() pulse = Arbseq_Class('pulse', timestep) pulse.delays = [0] pulse.heights = [1] pulse.widths = [params['pulse width'].magnitude] pulse.totaltime = params['pulse width'].magnitude pulse.nrepeats = 0 pulse.repeatstring = 'once' pulse.markerstring = 'highAtStartGoLow' pulse.markerloc = 0 pulse.create_sequence() post1 = Arbseq_Class('post1', timestep) post1.delays = [0] post1.heights = [0] post1.widths = [params['pulse width'].magnitude] post1.totaltime = params['pulse width'].magnitude post1.nrepeats = 1000 post1.repeatstring = 'repeat' post1.markerstring = 'lowAtStart' post1.markerloc = 0 post1.create_sequence() dc = Arbseq_Class('dc', timestep) dc.delays = [0] dc.heights = [0] dc.widths = [params['pulse width'].magnitude] dc.totaltime = params['pulse width'].magnitude dc.repeatstring = 'repeat' dc.markerstring = 'lowAtStart' dc.markerloc = 0 period = params['period'].magnitude width = params['pulse width'].magnitude repeats = period/width - 1 dc.nrepeats = repeats dc.create_sequence() pre2 = Arbseq_Class('pre2', timestep) pre2.delays = [0] pre2.heights = [1] pre2.widths = [params['pulse width'].magnitude] pre2.totaltime = params['pulse width'].magnitude pre2.nrepeats = 1000 pre2.repeatstring = 'repeat' pre2.markerstring = 'lowAtStart' pre2.markerloc = 0 pre2.create_sequence() pulse2 = Arbseq_Class('pulse2', timestep) pulse2.delays = [0] pulse2.heights = [1] pulse2.widths = [params['pulse width'].magnitude] pulse2.totaltime = params['pulse width'].magnitude pulse2.nrepeats = 0 pulse2.repeatstring = 'once' pulse2.markerstring = 'highAtStartGoLow' pulse2.markerloc = 0 pulse2.create_sequence() post2 = Arbseq_Class('post2', timestep) post2.delays = [0] post2.heights = [1] post2.widths = [params['pulse width'].magnitude] post2.totaltime = params['pulse width'].magnitude post2.nrepeats = 1000 post2.repeatstring = 'repeat' post2.markerstring = 'lowAtStart' post2.markerloc = 0 post2.create_sequence() dc2 = Arbseq_Class('dc2', timestep) dc2.delays = [0] dc2.heights = [-1] dc2.widths = [params['pulse width'].magnitude] dc2.totaltime = params['pulse width'].magnitude dc2.repeatstring = 'repeat' dc2.markerstring = 'lowAtStart' dc2.markerloc = 0 period = params['period'].magnitude width = params['pulse width'].magnitude repeats = period/width - 1 dc2.nrepeats = repeats dc2.create_sequence() self.fungen.send_arb(pulse, 1) self.fungen.send_arb(dc, 1) self.fungen.send_arb(pulse2, 2) self.fungen.send_arb(dc2, 2) self.fungen.send_arb(pre1, 1) self.fungen.send_arb(pre2, 2) self.fungen.send_arb(post1, 1) self.fungen.send_arb(post2, 2) seq1 = [pre1,pulse,post1,dc] seq2 = [pre2,pulse2,post2,dc2] self.fungen.create_arbseq('pulsetest', seq1, 1) self.fungen.wait() self.fungen.voltage[1] = params['pulse height'] self.fungen.create_arbseq('shutter', seq2, 2) self.fungen.wait() self.fungen.voltage[2] = 7.1 self.fungen.sync() self.configureQutag() expparams = self.exp_parameters.widget.get() wlparams = self.wl_parameters.widget.get() self.homelaser(wlparams['start']) print('Laser Homed!') self.fungen.output[2] = 'ON' self.fungen.output[1] = 'ON' qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] for i in range(expparams['# of points']): ##Wavemeter measurements stoparray = [] startTime = time.time() wls=[] lost = self.qutag.getLastTimestamps(True) while time.time()-startTime < expparams['Measurement Time'].magnitude: lost = self.qutag.getLastTimestamps(True) time.sleep(30*period) timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) wls.append(str(self.wm.measure_wavelength())) self.createHistogram(stoparray, timebase, bincount, period,i, wls) print(i) with Client(self.laser) as client: setting=client.get('laser1:ctl:wavelength-set', float) client.set('laser1:ctl:wavelength-set', setting-0.002) time.sleep(1) self.fungen.output[1] = 'OFF' self.fungen.output[2] = 'OFF' @Task() def qutagInit(self): print('qutag successfully initialized') @Element(name='Pulse parameters') def pulse_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('pulse height', {'type': float, 'default': 3, 'units':'V'}), ('pulse width', {'type': float, 'default': 500e-9, 'units':'s'}), ('period', {'type': float, 'default': 0.1, 'units':'s'}), ] w = ParamWidget(params) return w @Element(name='Wavelength parameters') def wl_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('start', {'type': float, 'default': 1535.63}), ('stop', {'type': float, 'default': 1535.43}) ] w = ParamWidget(params) return w @Element(name='Experiment Parameters') def exp_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('# of points', {'type': int, 'default': 10}), ('Measurement Time', {'type': int, 'default': 10, 'units':'s'}), ('File Name', {'type': str}) ] w = ParamWidget(params) return w @Element(name='QuTAG Parameters') def qutag_params(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start Channel', {'type': int, 'default': 0}), ('Stop Channel', {'type': int, 'default': 1}), ('Bin Count', {'type': int, 'default': 1000}) ] w = ParamWidget(params) return w @startpulse.initializer def initialize(self): self.wm.start_data() self.fungen.output[1] = 'OFF' self.fungen.output[2] = 'OFF' self.fungen.clear_mem(1) self.fungen.clear_mem(2) self.fungen.wait() @startpulse.finalizer def finalize(self): self.wm.stop_data() self.fungen.output[1] = 'OFF' self.fungen.output[2] = 'OFF' print('Lifetime measurements complete.') return @qutagInit.initializer def initialize(self): from lantz.drivers.qutools import QuTAG self.qutag = QuTAG() devType = self.qutag.getDeviceType() if (devType == self.qutag.DEVTYPE_QUTAG): print("found quTAG!") else: print("no suitable device found - demo mode activated") print("Device timebase:" + str(self.qutag.getTimebase())) return @qutagInit.finalizer def finalize(self): return
class LaserScan(Spyrelet): requires = {'wm': Bristol_771} conn1 = NetworkConnection('1.1.1.1') #conn1 = conn1 = SerialConnection('COM1') dlc = Client(conn1) daq = nidaqmx.Task() daq.ai_channels.add_ai_voltage_chan("Dev1/ai0") @Task() def scan(self): param = self.parameters.widget.get() filename = param['Filename'] F = open(filename + '.dat', 'w') f = filename + 'wavelength.dat' F2 = open(f, 'w') start_wavelength = param['Start'].magnitude * 1e9 stop_wavelength = param['Stop'].magnitude * 1e9 speed = param['Speed'].magnitude * 1e9 n = param['Num Scan'] self.spec = [] with Client(self.conn1) as dlc: dlc.set("laser1:ctl:scan:wavelength-begin", start_wavelength) dlc.set("laser1:ctl:scan:wavelength-end", stop_wavelength) dlc.set("laser1:ctl:scan:speed", speed) dlc.set("laser1:ctl:scan:microsteps", True) dlc.set("laser1:ctl:scan:shaple", 1) #0=Sawtooth,1=Triangle dlc.set("laser1:ctl:scan:trigger:output-enabled", True) for x in range(n - 1): dlc.set("laser1:ctl:wavelength-set", start_wavelength) dlc.set("laser1:ctl:scan:trigger:output-threshold", start_wavelength + 0.1) while True: st = dlc.get("io:digital-out2:value-act+0.1") if st == False: break dlc.set("laser1:ctl:scan:trigger:output-threshold", stop_wavelength) time.sleep(0.5) act_start = self.wm.measure_wavelength() dlc.exec("laser1:ctl:scan:start") daq.start() if dlc.get("io:digital-out2:value-act"): dlc.exec("laser1:ctl:scan:pause") data = daq.read(nidaqmx.constants.READ_ALL_AVAILABLE) daq.wait_until_done() self.xs.append(data) daq.stop() act_stop = self.wm.measure_wavelength() print('%d scan: act start = %f, act stop = %f' % (n, act_start, act_stop)) for i in range(n - 1): self.spec = self.spec + 1 / n * self.xs[i, :] self.wl = np.linspace(act_start, act_stop, len(self.spec)) plt.plot(self.wl, self.spec) plt.xlable('wavelength/nm') plt.ylable('transmission') for item in self.spec: F.write("%f," % item) F.write("\n") for item in self.wl: F.write("%f," % item) return @Element(name='Params') def parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start', { 'type': float, 'default': 1460 * 1e-9, 'units': 'm' }), ('Speed', { 'type': float, 'default': 0.5 * 1e-9, 'units': 'm' }), ('Stop', { 'type': float, 'default': 1570 * 1e-9, 'units': 'm' }), ('Num Scan', { 'type': int, 'default': 5 }), ('Filename', { 'type': str, 'default': 'D:\\Data\\09.06.2019\\wavelengthsweep' }) # ('Amplitude', {'type': float, 'default': 1, 'units':'V'}) ] w = ParamWidget(params) return w
return self.set_param('laser1:scan:signal-type', val) ##Set Wavelength @Feat() def set_wavelength(self): return self.get_param('laser1:ctl:wavelength-set') @set_wavelength.setter def set_wavelength(self, val): return self.set_param('laser1:ctl:wavelength-set', val) # def set_wavelength(self, val): # return self.set_param('laser1:ctl:wavelength-set', val) def set_output(self, val): return self.set_param('laser1:dl:cc:enabled', val) class DLCException(Exception): pass if __name__ == '__main__': import time conn1=NetworkConnection('1.1.1.1') with Client(conn1) as client: idn=client.get('serial-number',str) print(idn) wl=client.set('laser1:ctl:wavelength-set', 1535) print(wl)
class LaserScan(Spyrelet): requires = {} conn1 = NetworkConnection( '1.1.1.2') # these numbers are set on the laser controller dlc = Client(conn1) daq = nidaqmx.Task() daq.ai_channels.add_ai_voltage_chan( "Dev1/ai6") # change the number here to set which channel @Task() def scan(self): param = self.parameters.widget.get() filename = param['Filename'] F = open(filename + '.dat', 'w') f = filename + '\'.dat' F2 = open(f, 'w') start_wavelength = param[ 'Start'].magnitude * 1e9 # looking at a dictionary of the parameters stop_wavelength = param['Stop'].magnitude * 1e9 step = param['Step'].magnitude * 1e9 n = param['Num Scan'] self.wv = np.arange( start_wavelength, stop_wavelength, step ) # create a vector of points that the wavelength will tune to for the scan self.daq.start() # start collecting data from the DAQ with Client( self.conn1 ) as dlc: # why does this need to be set here when it looks like it is set above? for x in range(n): xx = [ ] # this vector stores the value of the power measurements taken in each scan dlc.set("laser1:ctl:wavelength-set", start_wavelength) time.sleep(8) # the wavelength wait time is long because if # the laser wavelength is initially set far from this starting point it takes some time to get there for item in self.wv: dlc.set("laser1:ctl:wavelength-set", item) time.sleep( 0.0001 ) # after waiting 100us after setting the wavelength read the power from the DAQ xx.append(self.daq.read()) time.sleep(1) # wait 1 second after finishing the scan wl = np.linspace( start_wavelength, stop_wavelength, len(xx) ) # linearly interpolate between the start and stop wavelengths for item in xx: F.write("%f," % item) for item in wl: F2.write("%f," % item) F.write("\n") F2.write("\n") self.daq.stop() return @Element(name='Params') def parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start', { 'type': float, 'default': 1460 * 1e-9, 'units': 'm' }), ('Step', { 'type': float, 'default': 0.01 * 1e-9, 'units': 'm' }), ('Stop', { 'type': float, 'default': 1570 * 1e-9, 'units': 'm' }), ('Num Scan', { 'type': int, 'default': 1 }), ('Filename', { 'type': str, 'default': 'D:\\Data\\09.06.2019\\wavelengthsweep' }) # ('Amplitude', {'type': float, 'default': 1, 'units':'V'}) ] w = ParamWidget(params) return w
def query(self, cmd, type): with Client(NetworkConnection(self.COM_port, timeout=5)) as client: return client.get(cmd, type)
class PLThinFilm(Spyrelet): requires = {'wm': Bristol_771} qutag = None laser = NetworkConnection('1.1.1.1') def configureQutag(self): qutagparams = self.qutag_params.widget.get() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] ##True = rising edge, False = falling edge. Final value is threshold voltage self.qutag.setSignalConditioning(start, self.qutag.SIGNALCOND_MISC, True, 1) self.qutag.setSignalConditioning(stop, self.qutag.SIGNALCOND_MISC, True, 0.1) self.qutag.enableChannels((start, stop)) def homelaser(self, start): current = self.wm.measure_wavelength() with Client(self.laser) as client: while current < start - 0.001 or current > start + 0.001: setting = client.get('laser1:ctl:wavelength-set', float) offset = current - start client.set('laser1:ctl:wavelength-set', setting - offset) time.sleep(3) current = self.wm.measure_wavelength() print(current, start) def createHistogram(self, stoparray, timebase, bincount, period, index, wls): hist = [0] * bincount for stoptime in stoparray: binNumber = int(stoptime * timebase * bincount / (period)) if binNumber >= bincount: continue else: hist[binNumber] += 1 out_name = "D:\\Data\\9.04.2019\\1T" np.savez(os.path.join(out_name, str(index + 59)), hist, wls) #np.savez(os.path.join(out_name,str(index+40)),hist,wls) print('Data stored under File Name: ' + self.exp_parameters.widget.get()['File Name'] + str(index)) @Task() def startpulse(self, timestep=100e-9): ##Qutag Part self.configureQutag() expparams = self.exp_parameters.widget.get() wlparams = self.wl_parameters.widget.get() self.homelaser(wlparams['start']) print('Laser Homed!') qutagparams = self.qutag_params.widget.get() lost = self.qutag.getLastTimestamps(True) # clear Timestamp buffer stoptimestamp = 0 synctimestamp = 0 bincount = qutagparams['Bin Count'] timebase = self.qutag.getTimebase() start = qutagparams['Start Channel'] stop = qutagparams['Stop Channel'] for i in range(expparams['# of points']): ##Wavemeter measurements stoparray = [] startTime = time.time() wls = [] lost = self.qutag.getLastTimestamps(True) while time.time( ) - startTime < expparams['Measurement Time'].magnitude: lost = self.qutag.getLastTimestamps(True) time.sleep(5 * 0.1) timestamps = self.qutag.getLastTimestamps(True) tstamp = timestamps[0] # array of timestamps tchannel = timestamps[1] # array of channels values = timestamps[2] # number of recorded timestamps for k in range(values): # output all stop events together with the latest start event if tchannel[k] == start: synctimestamp = tstamp[k] else: stoptimestamp = tstamp[k] stoparray.append(stoptimestamp) wls.append(str(self.wm.measure_wavelength())) self.createHistogram(stoparray, timebase, bincount, 0.1, i, wls) print(i) with Client(self.laser) as client: setting = client.get('laser1:ctl:wavelength-set', float) client.set('laser1:ctl:wavelength-set', setting - 0.008) time.sleep(1) @Task() def qutagInit(self): print('qutag successfully initialized') @Element(name='Wavelength parameters') def wl_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('start', { 'type': float, 'default': 1535.71 }), ('stop', { 'type': float, 'default': 1535.50 }) ] w = ParamWidget(params) return w @Element(name='Experiment Parameters') def exp_parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('# of points', { 'type': int, 'default': 50 }), ('Measurement Time', { 'type': int, 'default': 100, 'units': 's' }), ('File Name', { 'type': str }) ] w = ParamWidget(params) return w @Element(name='QuTAG Parameters') def qutag_params(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start Channel', { 'type': int, 'default': 0 }), ('Stop Channel', { 'type': int, 'default': 1 }), ('Bin Count', { 'type': int, 'default': 1000 }) ] w = ParamWidget(params) return w @startpulse.initializer def initialize(self): self.wm.start_data() @startpulse.finalizer def finalize(self): self.wm.stop_data() print('Lifetime measurements complete.') return @qutagInit.initializer def initialize(self): from lantz.drivers.qutools import QuTAG self.qutag = QuTAG() devType = self.qutag.getDeviceType() if (devType == self.qutag.DEVTYPE_QUTAG): print("found quTAG!") else: print("no suitable device found - demo mode activated") print("Device timebase:" + str(self.qutag.getTimebase())) return @qutagInit.finalizer def finalize(self): return
class LaserScan(Spyrelet): requires = {'wm': Bristol_771} conn1 = NetworkConnection('1.1.1.2') dlc = Client(conn1) daq = nidaqmx.Task() daq.ai_channels.add_ai_voltage_chan("Dev1/ai6") @Task() def scan(self): param = self.parameters.widget.get() filename = param['Filename'] F = open(filename + '.dat', 'w') f = filename + '\'.dat' F2 = open(f, 'w') start_wavelength = param['Start'].magnitude * 1e9 stop_voltage = param['Stop'].magnitude step = param['Step'].magnitude n = param['Num Scan'] self.vt = np.arange(0, stop_voltage, step) self.daq.start() with Client(self.conn1) as dlc: dlc.set("laser1:ctl:wavelength-set", start_wavelength) time.sleep(10) for x in range(n): xx = [] wl = [] dlc.set("laser1:dl:pc:voltage-set", 0) time.sleep(3) act_start = self.wm.measure_wavelength() for item in self.vt: dlc.set("laser1:dl:pc:voltage-set", item) time.sleep(0.5) xx.append(self.daq.read()) time.sleep(5) act_stop = self.wm.measure_wavelength() wl = np.linspace(act_start, act_stop, len(xx)) for item in xx: F.write("%f," % item) for item in wl: F2.write("%f," % item) F.write("\n") F2.write("\n") self.daq.stop() return @Element(name='Params') def parameters(self): params = [ # ('arbname', {'type': str, 'default': 'arbitrary_name'}),, ('Start', { 'type': float, 'default': 1499 * 1e-9, 'units': 'm' }), ('Step', { 'type': float, 'default': 0.01, 'units': 'V' }), ('Stop', { 'type': float, 'default': 2, 'units': 'V' }), ('Num Scan', { 'type': int, 'default': 1 }), ('Filename', { 'type': str, 'default': 'D:\\Data\\CW_cavity\\09.25\\wavelengthsweep' }) # ('Amplitude', {'type': float, 'default': 1, 'units':'V'}) ] w = ParamWidget(params) return w