Esempio n. 1
0
    def __init__(self, in_features, a=None, trainable=True):
        '''
        Initialization.
        Args:
            in_features: shape of the input
            a: trainable parameter
            trainable: sets `a` as a trainable parameter
            
            `a` is initialized to 1 by default, higher values = higher-frequency, 
            5-50 is a good starting point if you already think your data is periodic, 
            consider starting lower e.g. 0.5 if you think not, but don't worry, 
            `a` will be trained along with the rest of your model
        '''
        super(Snake, self).__init__()
        self.in_features = in_features if isinstance(in_features,
                                                     list) else [in_features]

        # Initialize `a`
        if a is not None:
            self.a = Parameter(torch.ones(self.in_features) *
                               a)  # create a tensor out of alpha
        else:
            m = Exponential(torch.tensor([0.1]))
            self.a = Parameter(
                (m.rsample(self.in_features)
                 ).squeeze())  # random init = mix of frequencies

        self.a.requiresGrad = trainable  # set the training of `a` to true
Esempio n. 2
0
class EmitterSamplerBlinking(EmitterSamplerFrameIndependent):
    def __init__(self, *, structure: structure_prior.StructurePrior, intensity_mu_sig: tuple, lifetime: float,
                 frame_range: tuple, xy_unit: str, px_size: tuple, density=None, em_avg=None, intensity_th=None):
        """

        Args:
            structure:
            intensity_mu_sig:
            lifetime:
            xy_unit:
            px_size:
            frame_range: specifies the frame range
            density:
            em_avg:
            intensity_th:

        """
        super().__init__(structure=structure,
                         photon_range=None,
                         xy_unit=xy_unit,
                         px_size=px_size,
                         density=density,
                         em_avg=em_avg)

        self.n_sampler = np.random.poisson
        self.frame_range = frame_range
        self.intensity_mu_sig = intensity_mu_sig
        self.intensity_dist = torch.distributions.normal.Normal(self.intensity_mu_sig[0],
                                                                self.intensity_mu_sig[1])
        self.intensity_th = intensity_th if intensity_th is not None else 1e-8
        self.lifetime_avg = lifetime
        self.lifetime_dist = Exponential(1 / self.lifetime_avg)  # parse the rate not the scale ...

        self.t0_dist = torch.distributions.uniform.Uniform(*self._frame_range_plus)

        """
        Determine the total number of emitters. Depends on lifetime, frames and emitters.
        (lifetime + 1) because of binning effect.
        """
        self._emitter_av_total = self._em_avg * self._num_frames_plus / (self.lifetime_avg + 1)

    @property
    def _frame_range_plus(self):
        """
        Frame range including buffer in front and end to account for build up effects.

        """
        return self.frame_range[0] - 3 * self.lifetime_avg, self.frame_range[1] + 3 * self.lifetime_avg

    @property
    def num_frames(self):
        return self.frame_range[1] - self.frame_range[0] + 1

    @property
    def _num_frames_plus(self):
        return self._frame_range_plus[1] - self._frame_range_plus[0] + 1

    def sample(self):
        """
        Return sampled EmitterSet in the specified frame range.

        Returns:
            EmitterSet

        """

        n = self.n_sampler(self._emitter_av_total)

        loose_em = self.sample_loose_emitter(n=n)
        em = loose_em.return_emitterset()
        em = em.get_subset_frame(*self.frame_range)  # because the simulated frame range is larger

        return em

    def sample_n(self, *args, **kwargs):
        raise NotImplementedError

    def sample_loose_emitter(self, n) -> decode.generic.emitter.LooseEmitterSet:
        """
        Generate loose EmitterSet. Loose emitters are emitters that are not yet binned to frames.

        Args:
            n: number of 'loose' emitters

        Returns:
            LooseEmitterSet

        """

        xyz = self.structure.sample(n)

        """Draw from intensity distribution but clamp the value so as not to fall below 0."""
        intensity = torch.clamp(self.intensity_dist.sample((n,)), self.intensity_th)

        """Distribute emitters in time. Increase the range a bit."""
        t0 = self.t0_dist.sample((n,))
        ontime = self.lifetime_dist.rsample((n,))

        return decode.generic.emitter.LooseEmitterSet(xyz, intensity, ontime, t0, id=torch.arange(n).long(),
                                                      xy_unit=self.xy_unit, px_size=self.px_size)

    @classmethod
    def parse(cls, param, structure, frames: tuple):
        return cls(structure=structure,
                   intensity_mu_sig=param.Simulation.intensity_mu_sig,
                   lifetime=param.Simulation.lifetime_avg,
                   xy_unit=param.Simulation.xy_unit,
                   px_size=param.Camera.px_size,
                   frame_range=frames,
                   density=param.Simulation.density,
                   em_avg=param.Simulation.emitter_av,
                   intensity_th=param.Simulation.intensity_th)