Esempio n. 1
0
    def test_compare_model_outputs_conv_static_fx(self):
        r"""Compare the output of conv layer in static quantized model and corresponding
        output of conv layer in float model
        """

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        model_list = [ConvModel(), ConvBnReLUModel()]

        for float_model in model_list:
            float_model.eval()
            prepared_model = prepare_fx(float_model, qconfig_dict)
            prepared_float_model = copy.deepcopy(prepared_model)

            # Run calibration
            test_only_eval_fn(prepared_model, self.img_data_2d)
            q_model = convert_fx(prepared_model)

            expected_act_compare_dict_keys = {"x.stats", "conv.stats"}
            self.compare_and_validate_model_outputs_results_fx(
                prepared_float_model,
                q_model,
                expected_act_compare_dict_keys,
                self.img_data_2d[0][0],
            )
Esempio n. 2
0
    def test_compare_model_stub_conv_static_fx(self):
        r"""Compare the output of static quantized conv layer and its float shadow module"""

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        model_list = [ConvModel(), ConvBnReLUModel()]

        for float_model in model_list:
            float_model.eval()

            prepared_model = prepare_fx(float_model, qconfig_dict)

            prepared_float_model = copy.deepcopy(prepared_model)

            # Run calibration
            test_only_eval_fn(prepared_model, self.img_data_2d)
            q_model = convert_fx(prepared_model)

            module_swap_list = [nn.Conv2d, nni.modules.fused.ConvReLU2d]

            expected_ob_dict_keys = {"conv.stats"}
            self.compare_and_validate_model_stub_results_fx(
                prepared_float_model,
                q_model,
                module_swap_list,
                expected_ob_dict_keys,
                self.img_data_2d[0][0],
            )
Esempio n. 3
0
 def test_compare_weights_conv(self):
     test_cases = (
         (ConvModel(), ),
         (ConvBnModel(), ),
         (ConvBnReLUModel(), ),
     )
     for m, in test_cases:
         m.eval()
         self._test_extract_weights(m, results_len=1)
Esempio n. 4
0
 def test_compare_shadow_activations_conv(self):
     test_cases = (
         (ConvModel(), ),
         (ConvBnModel(), ),
         (ConvBnReLUModel(), ),
     )
     for m, in test_cases:
         m.eval()
         res = self._test_match_shadow_activations(
             m, (torch.randn(1, 3, 4, 4), ), results_len=1)
Esempio n. 5
0
    def test_compare_weights_conv_static_fx(self):
        r"""Compare the weights of float and static quantized conv layer"""

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        model_list = [ConvModel(), ConvBnModel(), ConvBnReLUModel()]
        for float_model in model_list:
            float_model.eval()

            fused = fuse_fx(float_model)
            prepared_model = prepare_fx(float_model, qconfig_dict)

            # Run calibration
            test_only_eval_fn(prepared_model, self.img_data_2d)
            q_model = convert_fx(prepared_model)

            expected_weight_dict_keys = {"conv.weight"}
            self.compare_and_validate_model_weights_results_fx(
                fused, q_model, expected_weight_dict_keys)