Esempio n. 1
0
    def test_compare_model_outputs_linear_static_fx(self):
        r"""Compare the output of linear layer in static quantized model and corresponding
        output of linear layer in float model
        """

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        float_model = SingleLayerLinearModel()
        float_model.eval()

        prepared_model = prepare_fx(float_model, qconfig_dict)

        prepared_float_model = copy.deepcopy(prepared_model)

        # Run calibration
        test_only_eval_fn(prepared_model, self.calib_data)
        q_model = convert_fx(prepared_model)

        linear_data = self.calib_data[0][0]

        expected_act_compare_dict_keys = {"x.stats", "fc1.stats"}
        self.compare_and_validate_model_outputs_results_fx(
            prepared_float_model, q_model, expected_act_compare_dict_keys,
            linear_data)
Esempio n. 2
0
    def test_compare_model_stub_linear_static_fx(self):
        r"""Compare the output of static quantized linear layer and its float shadow module"""

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        float_model = SingleLayerLinearModel()
        float_model.eval()

        prepared_model = prepare_fx(float_model, qconfig_dict)

        prepared_float_model = copy.deepcopy(prepared_model)

        # Run calibration
        test_only_eval_fn(prepared_model, self.calib_data)
        q_model = convert_fx(prepared_model)

        linear_data = self.calib_data[0][0]
        module_swap_list = [nn.Linear]

        expected_ob_dict_keys = {"fc1.stats"}

        self.compare_and_validate_model_stub_results_fx(
            prepared_float_model,
            q_model,
            module_swap_list,
            expected_ob_dict_keys,
            linear_data,
        )
    def test_compare_weights_linear_static_fx(self):
        r"""Compare the weights of float and static quantized linear layer"""
        def calibrate(model, calib_data):
            model.eval()
            with torch.no_grad():
                for inp in calib_data:
                    model(*inp)

        def compare_and_validate_results(float_model, q_model):
            weight_dict = compare_weights_fx(float_model.state_dict(),
                                             q_model.state_dict())
            self.assertEqual(len(weight_dict), 1)
            for k, v in weight_dict.items():
                self.assertTrue(v["float"].shape == v["quantized"].shape)

        float_model = SingleLayerLinearModel()
        float_model.eval()

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        prepared_model = prepare_fx(float_model, qconfig_dict)

        backup_prepared_model = copy.deepcopy(prepared_model)
        backup_prepared_model.eval()

        # Run calibration
        calibrate(prepared_model, self.calib_data)
        q_model = convert_fx(prepared_model)

        compare_and_validate_results(backup_prepared_model, q_model)
Esempio n. 4
0
    def test_remove_qconfig_observer_fx(self):
        r"""Remove activation_post_process node from fx prepred model"""
        float_model = SingleLayerLinearModel()
        float_model.eval()

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)

        qconfig_dict = {"": qconfig}

        prepared_model = prepare_fx(float_model, qconfig_dict)

        prepared_float_model = copy.deepcopy(prepared_model)
        prepared_float_model.eval()

        model = remove_qconfig_observer_fx(prepared_float_model)

        modules = dict(model.named_modules())
        for node in model.graph.nodes:
            if node.op == "call_module":
                self.assertFalse(is_activation_post_process(modules[node.target]))
Esempio n. 5
0
    def test_compare_weights_linear_static_fx(self):
        r"""Compare the weights of float and static quantized linear layer"""

        qengine = torch.backends.quantized.engine
        qconfig = get_default_qconfig(qengine)
        qconfig_dict = {"": qconfig}

        float_model = SingleLayerLinearModel()
        float_model.eval()

        prepared_model = prepare_fx(float_model, qconfig_dict)

        prepared_float_model = copy.deepcopy(prepared_model)
        prepared_float_model.eval()

        # Run calibration
        test_only_eval_fn(prepared_model, self.calib_data)
        q_model = convert_fx(prepared_model)

        expected_weight_dict_keys = {"fc1._packed_params._packed_params"}
        self.compare_and_validate_model_weights_results_fx(
            prepared_float_model, q_model, expected_weight_dict_keys)