Esempio n. 1
0
def _multi_tensor_rprop(params: List[Tensor], grads: List[Tensor],
                        prevs: List[Tensor], step_sizes: List[Tensor], *,
                        step_size_min: float, step_size_max: float,
                        etaminus: float, etaplus: float):

    if len(params) == 0:
        return

    signs = torch._foreach_mul(grads, prevs)
    signs = [s.sign() for s in signs]
    for sign in signs:
        sign[sign.gt(0)] = etaplus
        sign[sign.lt(0)] = etaminus
        sign[sign.eq(0)] = 1

    # update stepsizes with step size updates
    torch._foreach_mul_(step_sizes, signs)
    for step_size in step_sizes:
        step_size.clamp_(step_size_min, step_size_max)

    # for dir<0, dfdx=0
    # for dir>=0 dfdx=dfdx
    for i in range(len(grads)):
        grads[i] = grads[i].clone(memory_format=torch.preserve_format)
        grads[i][signs[i].eq(etaminus)] = 0

    # update parameters
    grad_signs = [grad.sign() for grad in grads]
    torch._foreach_addcmul_(params, grad_signs, step_sizes, value=-1)

    for i in range(len(prevs)):
        prevs[i].copy_(grads[i])
Esempio n. 2
0
def _multi_tensor_rmsprop(params: List[Tensor], grads: List[Tensor],
                          square_avgs: List[Tensor], grad_avgs: List[Tensor],
                          momentum_buffer_list: List[Tensor], *, lr: float,
                          alpha: float, eps: float, weight_decay: float,
                          momentum: float, centered: bool):

    if len(params) == 0:
        return

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(square_avgs, alpha)
    torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - alpha)

    if centered:
        torch._foreach_mul_(grad_avgs, alpha)
        torch._foreach_add_(grad_avgs, grads, alpha=1 - alpha)
        avg = torch._foreach_addcmul(square_avgs,
                                     grad_avgs,
                                     grad_avgs,
                                     value=-1)
        torch._foreach_sqrt_(avg)
        torch._foreach_add_(avg, eps)
    else:
        avg = torch._foreach_sqrt(square_avgs)
        torch._foreach_add_(avg, eps)

    if momentum > 0:
        torch._foreach_mul_(momentum_buffer_list, momentum)
        torch._foreach_addcdiv_(momentum_buffer_list, grads, avg)
        torch._foreach_add_(params, momentum_buffer_list, alpha=-lr)
    else:
        torch._foreach_addcdiv_(params, grads, avg, value=-lr)
Esempio n. 3
0
def adadelta(params: List[Tensor], grads: List[Tensor],
             square_avgs: List[Tensor], acc_deltas: List[Tensor], *, lr: float,
             weight_decay: float, rho: float, eps: float):
    r"""Functional API that performs Adadelta algorithm computation.

    See :class:`~torch.optim.Adadelta` for details.
    """

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(square_avgs, rho)
    torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)

    std = torch._foreach_add(square_avgs, eps)
    torch._foreach_sqrt_(std)

    deltas = torch._foreach_add(acc_deltas, eps)
    torch._foreach_sqrt_(deltas)
    torch._foreach_div_(deltas, std)
    torch._foreach_mul_(deltas, grads)

    torch._foreach_add_(params, deltas, alpha=-lr)

    torch._foreach_mul_(acc_deltas, rho)
    torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)
Esempio n. 4
0
def _multi_tensor_adadelta(params: List[Tensor],
                           grads: List[Tensor],
                           square_avgs: List[Tensor],
                           acc_deltas: List[Tensor],
                           *,
                           lr: float,
                           weight_decay: float,
                           rho: float,
                           eps: float,
                           maximize: bool):

    if len(params) == 0:
        return

    if maximize:
        grads = torch._foreach_neg(grads)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(square_avgs, rho)
    torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)

    std = torch._foreach_add(square_avgs, eps)
    torch._foreach_sqrt_(std)

    deltas = torch._foreach_add(acc_deltas, eps)
    torch._foreach_sqrt_(deltas)
    torch._foreach_div_(deltas, std)
    torch._foreach_mul_(deltas, grads)

    torch._foreach_add_(params, deltas, alpha=-lr)

    torch._foreach_mul_(acc_deltas, rho)
    torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)
Esempio n. 5
0
def adagrad(params: List[Tensor], grads: List[Tensor],
            state_sums: List[Tensor], state_steps: List[int],
            has_sparse_grad: bool, *, lr: float, weight_decay: float,
            lr_decay: float, eps: float):
    r"""Functional API that performs Adagrad algorithm computation.

    See :class:`~torch.optim.Adagrad` for details.
    """

    if weight_decay != 0:
        if has_sparse_grad:
            raise RuntimeError(
                "weight_decay option is not compatible with sparse gradients")
        torch._foreach_add_(grads, params, alpha=weight_decay)

    minus_clr = [-lr / (1 + (step - 1) * lr_decay) for step in state_steps]

    if has_sparse_grad:
        # sparse is not supported by multi_tensor. Fall back to optim.adagrad
        # implementation for sparse gradients
        for i, (param, grad, state_sum,
                step) in enumerate(zip(params, grads, state_sums,
                                       state_steps)):
            grad = grad.coalesce(
            )  # the update is non-linear so indices must be unique
            grad_indices = grad._indices()
            grad_values = grad._values()
            size = grad.size()

            state_sum.add_(_make_sparse(grad, grad_indices,
                                        grad_values.pow(2)))
            std_sparse = state_sum.sparse_mask(grad)
            std_sparse_values = std_sparse._values().sqrt_().add_(eps)
            param.add_(
                _make_sparse(grad, grad_indices,
                             grad_values / std_sparse_values),
                alpha=minus_clr[i],
            )
    else:
        grads = [
            torch.view_as_real(x) if torch.is_complex(x) else x for x in grads
        ]
        state_sums = [
            torch.view_as_real(x) if torch.is_complex(x) else x
            for x in state_sums
        ]
        torch._foreach_addcmul_(state_sums, grads, grads, value=1)
        std = torch._foreach_add(torch._foreach_sqrt(state_sums), eps)
        toAdd = torch._foreach_div(torch._foreach_mul(grads, minus_clr), std)
        toAdd = [
            torch.view_as_complex(x) if torch.is_complex(params[i]) else x
            for i, x in enumerate(toAdd)
        ]
        torch._foreach_add_(params, toAdd)
        state_sums = [
            torch.view_as_complex(x) if torch.is_complex(params[i]) else x
            for i, x in enumerate(state_sums)
        ]
Esempio n. 6
0
def _multi_tensor_radam(params: List[Tensor], grads: List[Tensor],
                        exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor],
                        state_steps: List[Tensor], *, beta1: float,
                        beta2: float, lr: float, weight_decay: float,
                        eps: float):

    if len(params) == 0:
        return

    # Update steps
    torch._foreach_add_(state_steps, 1)

    # maximum length of the approximated SMA
    rho_inf = 2 / (1 - beta2) - 1
    # compute the length of the approximated SMA
    rho_t_list = [
        rho_inf - 2 * step.item() * (beta2**step.item()) /
        (1 - beta2**step.item()) for step in state_steps
    ]

    bias_correction1 = [1 - beta1**step.item() for step in state_steps]
    bias_correction2 = [1 - beta2**step.item() for step in state_steps]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    rect = [
        math.sqrt((rho_t - 4) * (rho_t - 2) * rho_inf /
                  ((rho_inf - 4) * (rho_inf - 2) * rho_t)) if rho_t > 5 else 0
        for rho_t in rho_t_list
    ]
    unrectified = [0 if rect > 0 else 1. for rect in rect]

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    denom = torch._foreach_div(exp_avg_sq_sqrt, bias_correction_sqrt)
    step_size = [(lr * rect / bc) * -1
                 for rect, bc in zip(rect, bias_correction1)]
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)

    denom = [
        torch.ones_like(exp_av, memory_format=torch.preserve_format)
        for exp_av in exp_avgs
    ]
    step_size = [(lr * rect / bc) * -1
                 for rect, bc in zip(unrectified, bias_correction1)]
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)
Esempio n. 7
0
def _multi_tensor_adam(params: List[Tensor],
                       grads: List[Tensor],
                       exp_avgs: List[Tensor],
                       exp_avg_sqs: List[Tensor],
                       max_exp_avg_sqs: List[Tensor],
                       state_steps: List[Tensor],
                       *,
                       amsgrad: bool,
                       beta1: float,
                       beta2: float,
                       lr: float,
                       weight_decay: float,
                       eps: float,
                       maximize: bool):

    if len(params) == 0:
        return

    # update steps
    torch._foreach_add_(state_steps, 1)

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
    bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    if amsgrad:
        # Maintains the maximum of all 2nd moment running avg. till now
        max_exp_avg_sqs = torch._foreach_maximum(max_exp_avg_sqs, exp_avg_sqs)  # type: ignore[assignment]

        # Use the max. for normalizing running avg. of gradient
        max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
        bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
        torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction_sqrt)
        denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
    else:
        exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
        bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
        torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
        denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

    step_size = [(lr / bc) * -1 for bc in bias_correction1]
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)
Esempio n. 8
0
def _multi_tensor_rmsprop(params: List[Tensor], grads: List[Tensor],
                          square_avgs: List[Tensor], grad_avgs: List[Tensor],
                          momentum_buffer_list: List[Tensor], *, lr: float,
                          alpha: float, eps: float, weight_decay: float,
                          momentum: float, centered: bool, maximize: bool,
                          differentiable: bool):

    if len(params) == 0:
        return

    assert not differentiable, "_foreach ops don't support autograd"

    if maximize:
        grads = torch._foreach_neg(grads)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    def _view_complex_as_real(tensor_list):
        return [
            torch.view_as_real(t) if torch.is_complex(t) else t
            for t in tensor_list
        ]

    grads = _view_complex_as_real(grads)
    params = _view_complex_as_real(params)
    square_avgs = _view_complex_as_real(square_avgs)

    torch._foreach_mul_(square_avgs, alpha)
    torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - alpha)

    if centered:
        grad_avgs = _view_complex_as_real(grad_avgs)
        torch._foreach_mul_(grad_avgs, alpha)
        torch._foreach_add_(grad_avgs, grads, alpha=1 - alpha)
        avg = torch._foreach_addcmul(square_avgs,
                                     grad_avgs,
                                     grad_avgs,
                                     value=-1)
        torch._foreach_sqrt_(avg)
        torch._foreach_add_(avg, eps)
    else:
        avg = torch._foreach_sqrt(square_avgs)
        torch._foreach_add_(avg, eps)

    if momentum > 0:
        momentum_buffer_list = _view_complex_as_real(momentum_buffer_list)
        torch._foreach_mul_(momentum_buffer_list, momentum)
        torch._foreach_addcdiv_(momentum_buffer_list, grads, avg)
        torch._foreach_add_(params, momentum_buffer_list, alpha=-lr)
    else:
        torch._foreach_addcdiv_(params, grads, avg, value=-lr)
Esempio n. 9
0
def _multi_tensor_rprop(params: List[Tensor],
                        grads: List[Tensor],
                        prevs: List[Tensor],
                        step_sizes: List[Tensor],
                        *,
                        step_size_min: float,
                        step_size_max: float,
                        etaminus: float,
                        etaplus: float,
                        maximize: bool):

    if len(params) == 0:
        return

    # Handle complex params
    def _view_complex_as_real(tensor_list):
        return [torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list]

    grads = _view_complex_as_real(grads)
    prevs = _view_complex_as_real(prevs)
    params = _view_complex_as_real(params)
    step_sizes = _view_complex_as_real(step_sizes)

    if maximize:
        grads = torch._foreach_neg(grads)

    signs = torch._foreach_mul(grads, prevs)
    signs = [s.sign() for s in signs]
    for sign in signs:
        sign[sign.gt(0)] = etaplus
        sign[sign.lt(0)] = etaminus
        sign[sign.eq(0)] = 1

    # update stepsizes with step size updates
    torch._foreach_mul_(step_sizes, signs)
    for step_size in step_sizes:
        step_size.clamp_(step_size_min, step_size_max)

    # for dir<0, dfdx=0
    # for dir>=0 dfdx=dfdx
    grads = list(grads)
    for i in range(len(grads)):
        grads[i] = grads[i].clone(memory_format=torch.preserve_format)
        grads[i][signs[i].eq(etaminus)] = 0

    # update parameters
    grad_signs = [grad.sign() for grad in grads]
    torch._foreach_addcmul_(params, grad_signs, step_sizes, value=-1)

    for i in range(len(prevs)):
        prevs[i].copy_(grads[i])
Esempio n. 10
0
def _multi_tensor_nadam(params: List[Tensor], grads: List[Tensor],
                        exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor],
                        mu_products: List[Tensor], state_steps: List[Tensor],
                        *, beta1: float, beta2: float, lr: float,
                        weight_decay: float, momentum_decay: float,
                        eps: float):

    if len(params) == 0:
        return

    # update steps
    torch._foreach_add_(state_steps, 1)

    bias_correction1 = [1 - beta1**step.item() for step in state_steps]
    bias_correction2 = [1 - beta2**step.item() for step in state_steps]
    mus = [
        beta1 * (1. - 0.5 * (0.96**(step.item() * momentum_decay)))
        for step in state_steps
    ]
    mu_nexts = [
        beta1 * (1. - 0.5 * (0.96**((step.item() + 1) * momentum_decay)))
        for step in state_steps
    ]

    # update mu_products
    torch._foreach_mul_(mu_products, mus)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
    denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

    step_size_grads = [(lr * (1. - mu) / (1. - mu_product.item())) * -1
                       for mu_product, mu in zip(mu_products, mus)]
    step_size_expavg = [
        (lr * mu_next / (1. - mu_product.item() * mu_next)) * -1
        for mu_product, mu_next in zip(mu_products, mu_nexts)
    ]
    torch._foreach_addcdiv_(params, grads, denom, step_size_grads)
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size_expavg)
Esempio n. 11
0
def _multi_tensor_adagrad(params: List[Tensor], grads: List[Tensor],
                          state_sums: List[Tensor], state_steps: List[Tensor],
                          *, lr: float, weight_decay: float, lr_decay: float,
                          eps: float, has_sparse_grad: bool):

    # Foreach functions will throw errors if given empty lists
    if len(params) == 0:
        return

    if has_sparse_grad is None:
        has_sparse_grad = any([grad.is_sparse for grad in grads])

    if has_sparse_grad:
        return _single_tensor_adagrad(params,
                                      grads,
                                      state_sums,
                                      state_steps,
                                      lr=lr,
                                      weight_decay=weight_decay,
                                      lr_decay=lr_decay,
                                      eps=eps,
                                      has_sparse_grad=has_sparse_grad)

    # Update steps
    torch._foreach_add_(state_steps, 1)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    minus_clr = [-lr / (1 + (step - 1) * lr_decay) for step in state_steps]

    grads = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in grads
    ]
    state_sums = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in state_sums
    ]
    torch._foreach_addcmul_(state_sums, grads, grads, value=1)
    std = torch._foreach_add(torch._foreach_sqrt(state_sums), eps)
    toAdd = torch._foreach_div(torch._foreach_mul(grads, minus_clr), std)
    toAdd = [
        torch.view_as_complex(x) if torch.is_complex(params[i]) else x
        for i, x in enumerate(toAdd)
    ]
    torch._foreach_add_(params, toAdd)
    state_sums = [
        torch.view_as_complex(x) if torch.is_complex(params[i]) else x
        for i, x in enumerate(state_sums)
    ]
Esempio n. 12
0
def radam(params: List[Tensor], grads: List[Tensor], exp_avg: List[Tensor],
          exp_avg_sq: List[Tensor], states: List[Dict], *, beta1: float,
          beta2: float, lr: float, weight_decay: float, eps: float):
    r"""Functional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    """

    # maximum length of the approximated SMA
    rho_inf = 2 / (1 - beta2) - 1
    # compute the length of the approximated SMA
    rho_t_list = [
        rho_inf - 2 * state['step'] * (beta2**state['step']) /
        (1 - beta2**state['step']) for state in states
    ]

    bias_correction1 = [1 - beta1**state['step'] for state in states]
    bias_correction2 = [1 - beta2**state['step'] for state in states]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avg, beta1)
    torch._foreach_add_(exp_avg, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sq, beta2)
    torch._foreach_addcmul_(exp_avg_sq, grads, grads, 1 - beta2)

    rect = [
        math.sqrt((rho_t - 4) * (rho_t - 2) * rho_inf /
                  ((rho_inf - 4) * (rho_inf - 2) * rho_t)) if rho_t > 5 else 0
        for rho_t in rho_t_list
    ]
    unrectified = [0 if rect > 0 else 1. for rect in rect]

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sq)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    denom = torch._foreach_div(exp_avg_sq_sqrt, bias_correction_sqrt)
    step_size = [(lr * rect / bc) * -1
                 for rect, bc in zip(rect, bias_correction1)]
    torch._foreach_addcdiv_(params, exp_avg, denom, step_size)

    denom = [
        torch.ones_like(exp_av, memory_format=torch.preserve_format)
        for exp_av in exp_avg
    ]
    step_size = [(lr * rect / bc) * -1
                 for rect, bc in zip(unrectified, bias_correction1)]
    torch._foreach_addcdiv_(params, exp_avg, denom, step_size)
Esempio n. 13
0
def nadam(params: List[Tensor],
          grads: List[Tensor],
          exp_avg: List[Tensor],
          exp_avg_sq: List[Tensor],
          mu_products: List[Tensor],
          states: List[Dict],
          *,
          beta1: float,
          beta2: float,
          lr: float,
          weight_decay: float,
          momentum_decay: float,
          eps: float):
    r"""Functional API that performs NAdam algorithm computation.

    See :class:`~torch.optim.NAdam` for details.
    """

    bias_correction1 = [1 - beta1 ** state['step'] for state in states]
    bias_correction2 = [1 - beta2 ** state['step'] for state in states]
    mus = [beta1 * (1. - 0.5 * (0.96 ** (state['step'] * momentum_decay))) for state in states]
    mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((state['step'] + 1) * momentum_decay)))
                for state in states]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avg, beta1)
    torch._foreach_add_(exp_avg, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sq, beta2)
    torch._foreach_addcmul_(exp_avg_sq, grads, grads, 1 - beta2)

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sq)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
    denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

    step_size_grads = [(lr * (1. - mu) / (1. - mu_product)) * -1
                       for mu_product, mu in zip(mu_products, mus)]
    step_size_expavg = [(lr * mu_next / (1. - mu_product * mu_next)) * -1
                        for mu_product, mu_next in zip(mu_products, mu_nexts)]
    torch._foreach_addcdiv_(params, grads, denom, step_size_grads)
    torch._foreach_addcdiv_(params, exp_avg, denom, step_size_expavg)
Esempio n. 14
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            grads = []
            params_with_grad = []
            states = []
            alpha = group['alpha']
            square_avg = []

            for p in group['params']:
                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            'RMSprop does not support sparse gradients')

                    grads.append(p.grad)
                    params_with_grad.append(p)

                    state = self.state[p]
                    # State initialization
                    if len(state) == 0:
                        state['step'] = 0
                        state['square_avg'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)
                        if group['momentum'] > 0:
                            state['momentum_buffer'] = torch.zeros_like(
                                p, memory_format=torch.preserve_format)
                        if group['centered']:
                            state['grad_avg'] = torch.zeros_like(
                                p, memory_format=torch.preserve_format)

                        state['step'] += 1

                    states.append(state)
                    square_avg.append(state['square_avg'])

            if group['weight_decay'] != 0:
                torch._foreach_add_(grads,
                                    params_with_grad,
                                    alpha=group['weight_decay'])

            torch._foreach_mul_(square_avg, alpha)
            torch._foreach_addcmul_(square_avg, grads, grads, value=1 - alpha)

            if group['centered']:
                grad_avgs = [s['grad_avg'] for s in states]
                torch._foreach_mul_(grad_avgs, alpha)
                torch._foreach_add_(grad_avgs, grads, alpha=1 - alpha)
                avg = torch._foreach_addcmul(square_avg,
                                             grad_avgs,
                                             grad_avgs,
                                             value=-1)
                torch._foreach_sqrt_(avg)
                torch._foreach_add_(avg, group['eps'])
            else:
                avg = torch._foreach_sqrt(square_avg)
                torch._foreach_add_(avg, group['eps'])

            if group['momentum'] > 0:
                buf = [s['momentum_buffer'] for s in states]
                torch._foreach_mul_(buf, group['momentum'])
                torch._foreach_addcdiv_(buf, grads, avg)
                torch._foreach_add_(params_with_grad, buf, alpha=-group['lr'])
            else:
                torch._foreach_addcdiv_(params_with_grad,
                                        grads,
                                        avg,
                                        value=-group['lr'])

        return loss
Esempio n. 15
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            amsgrad = group["amsgrad"]

            grads = []
            states = []
            exp_avg = []
            exp_avg_sq = []
            max_exp_avg_sq = []
            params_with_grad = []

            for p in group["params"]:
                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            "AdamW does not support sparse gradients")

                    # Perform stepweight decay
                    p.mul_(1 - group["lr"] * group["weight_decay"])

                    params_with_grad.append(p)
                    grads.append(p.grad)

            for p in params_with_grad:
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format)
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.ones_like(
                        p, memory_format=torch.preserve_format
                    )  # torch init to zeros
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state["max_exp_avg_sq"] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)

                exp_avg.append(state["exp_avg"])
                exp_avg_sq.append(state["exp_avg_sq"])

                if amsgrad:
                    max_exp_avg_sq.append(state["max_exp_avg_sq"])

                state["step"] += 1
                states.append(state)

            beta1, beta2 = group["betas"]

            bias_correction1 = [1 - beta1**state["step"] for state in states]
            bias_correction2 = [1 - beta2**state["step"] for state in states]

            #
            # Decay the first and second moment running average coefficient
            #
            torch._foreach_mul_(exp_avg, beta1)
            torch._foreach_add_(exp_avg, grads, alpha=1 - beta1)

            torch._foreach_mul_(exp_avg_sq, beta2)
            torch._foreach_addcmul_(exp_avg_sq, grads, grads, 1 - beta2)

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                max_exp_avg_sq = torch._foreach_maximum(
                    max_exp_avg_sq, exp_avg_sq)

                # Use the max. for normalizing running avg. of gradient
                max_exp_avg_sq_sqrt = torch._foreach_sqrt(
                    torch._foreach_add(max_exp_avg_sq, group["eps"]))
                bias_correction_sqrt = [
                    math.sqrt(bc) for bc in bias_correction2
                ]
                denom = torch._foreach_div(max_exp_avg_sq_sqrt,
                                           bias_correction_sqrt)
            else:
                exp_avg_sq_sqrt = torch._foreach_sqrt(
                    torch._foreach_add(exp_avg_sq, group["eps"]))
                bias_correction_sqrt = [
                    math.sqrt(bc) for bc in bias_correction2
                ]
                denom = torch._foreach_div(exp_avg_sq_sqrt,
                                           bias_correction_sqrt)

            step_size = [-1 * (group["lr"] / bc) for bc in bias_correction1]
            torch._foreach_addcdiv_(params_with_grad, exp_avg, denom,
                                    step_size)

        return loss
Esempio n. 16
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            amsgrad = group['amsgrad']

            grads = []
            states = []
            exp_avg = []
            exp_avg_sq = []
            max_exp_avg_sq = []
            params_with_grad = []

            for p in group['params']:
                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            'Adam does not support sparse gradients, please consider SparseAdam instead'
                        )
                    params_with_grad.append(p)
                    grads.append(p.grad)

            for p in params_with_grad:
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(
                        p, memory_format=torch.preserve_format)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(
                        p, memory_format=torch.preserve_format)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state['max_exp_avg_sq'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)

                exp_avg.append(state['exp_avg'])
                exp_avg_sq.append(state['exp_avg_sq'])

                if amsgrad:
                    max_exp_avg_sq.append(state['max_exp_avg_sq'])

                state['step'] += 1
                states.append(state)

            beta1, beta2 = group['betas']

            bias_correction1 = [1 - beta1**state['step'] for state in states]
            bias_correction2 = [1 - beta2**state['step'] for state in states]
            if group['weight_decay'] != 0:
                grads = torch._foreach_add(grads,
                                           params_with_grad,
                                           alpha=group['weight_decay'])

            #
            # Decay the first and second moment running average coefficient
            #
            torch._foreach_mul_(exp_avg, beta1)
            torch._foreach_add_(exp_avg, grads, alpha=1 - beta1)

            torch._foreach_mul_(exp_avg_sq, beta2)
            torch._foreach_addcmul_(exp_avg_sq, grads, grads, 1 - beta2)

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                max_exp_avg_sq = torch._foreach_maximum(
                    max_exp_avg_sq, exp_avg_sq)

                # Use the max. for normalizing running avg. of gradient
                max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sq)
                bias_correction_sqrt = [
                    math.sqrt(bc) for bc in bias_correction2
                ]
                torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction_sqrt)
                denom = torch._foreach_add(max_exp_avg_sq_sqrt, group['eps'])
            else:
                exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sq)
                bias_correction_sqrt = [
                    math.sqrt(bc) for bc in bias_correction2
                ]
                torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
                denom = torch._foreach_add(exp_avg_sq_sqrt, group['eps'])

            step_size = [(group['lr'] / bc) * -1 for bc in bias_correction1]
            torch._foreach_addcdiv_(params_with_grad, exp_avg, denom,
                                    step_size)

        return loss
Esempio n. 17
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            grads = []
            params_with_grad = []
            states = []
            square_avgs = []
            acc_deltas = []

            rho, eps = group['rho'], group['eps']

            for p in group['params']:
                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            'Adadelta does not support sparse gradients')

                    grads.append(p.grad)
                    params_with_grad.append(p)

                    state = self.state[p]

                    # State initialization
                    if len(state) == 0:
                        state['step'] = 0
                        state['square_avg'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)
                        state['acc_delta'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)

                    square_avgs.append(state['square_avg'])
                    acc_deltas.append(state['acc_delta'])

                    state['step'] += 1
                    states.append(state)

            if group['weight_decay'] != 0:
                torch._foreach_add_(grads,
                                    params_with_grad,
                                    alpha=group['weight_decay'])

            torch._foreach_mul_(square_avgs, rho)
            torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)

            std = torch._foreach_add(square_avgs, eps)
            torch._foreach_sqrt_(std)

            deltas = torch._foreach_add(acc_deltas, eps)
            torch._foreach_sqrt_(deltas)
            torch._foreach_div_(deltas, std)
            torch._foreach_mul_(deltas, grads)

            torch._foreach_add_(params_with_grad, deltas, alpha=-group['lr'])

            torch._foreach_mul_(acc_deltas, rho)
            torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)

        return loss
Esempio n. 18
0
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        grads = []
        states = []
        params_with_grad = []
        step_sizes = []

        for group in self.param_groups:
            for p in group['params']:
                etaminus, etaplus = group['etas']
                step_size_min, step_size_max = group['step_sizes']

                if p.grad is not None:
                    if p.grad.is_sparse:
                        raise RuntimeError(
                            'RMSprop does not support sparse gradients')

                    grads.append(p.grad)
                    params_with_grad.append(p)

                    state = self.state[p]
                    # State initialization
                    if len(state) == 0:
                        state['step'] = 0
                        state['prev'] = torch.zeros_like(
                            p, memory_format=torch.preserve_format)
                        state['step_size'] = p.grad.new().resize_as_(
                            p.grad).fill_(group['lr'])

                        state['step'] += 1

                    states.append(state)
                    step_sizes.append(state['step_size'])

            signs = torch._foreach_mul(grads, [s['prev'] for s in states])
            signs = [s.sign() for s in signs]
            for sign in signs:
                sign[sign.gt(0)] = etaplus
                sign[sign.lt(0)] = etaminus
                sign[sign.eq(0)] = 1

            # update stepsizes with step size updates
            torch._foreach_mul_(step_sizes, signs)
            for step_size in step_sizes:
                step_size.clamp_(step_size_min, step_size_max)

            # for dir<0, dfdx=0
            # for dir>=0 dfdx=dfdx
            for i in range(len(grads)):
                grads[i] = grads[i].clone(memory_format=torch.preserve_format)
                grads[i][signs[i].eq(etaminus)] = 0

            # update parameters
            grad_signs = [grad.sign() for grad in grads]
            torch._foreach_addcmul_(params_with_grad,
                                    grad_signs,
                                    step_sizes,
                                    value=-1)

            for i in range(len(states)):
                states[i]['prev'].copy_(grads[i])

        return loss
Esempio n. 19
0
def _multi_tensor_adamw(params: List[Tensor], grads: List[Tensor],
                        exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor],
                        max_exp_avg_sqs: List[Tensor],
                        state_steps: List[Tensor], *, amsgrad: bool,
                        beta1: float, beta2: float, lr: float,
                        weight_decay: float, eps: float, maximize: bool,
                        capturable: bool):
    if len(params) == 0:
        return

    if capturable:
        assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
            "If capturable=True, params and state_steps must be CUDA tensors."

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    grads = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in grads
    ]
    exp_avgs = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs
    ]
    exp_avg_sqs = [
        torch.view_as_real(x) if torch.is_complex(x) else x
        for x in exp_avg_sqs
    ]
    params = [
        torch.view_as_real(x) if torch.is_complex(x) else x for x in params
    ]

    # update steps
    torch._foreach_add_(state_steps, 1)

    # Perform stepweight decay
    torch._foreach_mul_(params, 1 - lr * weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    if capturable:
        # TODO: use foreach_pow if/when foreach_pow is added
        bias_correction1 = [torch.pow(beta1, step) for step in state_steps]
        bias_correction2 = [torch.pow(beta2, step) for step in state_steps]
        # foreach_sub doesn't allow a scalar as the first arg
        torch._foreach_sub_(bias_correction1, 1)
        torch._foreach_sub_(bias_correction2, 1)
        torch._foreach_neg_(bias_correction1)
        torch._foreach_neg_(bias_correction2)

        # foreach_div doesn't allow a scalar as the first arg
        step_size = torch._foreach_div(bias_correction1, lr)
        torch._foreach_reciprocal_(step_size)
        torch._foreach_neg_(step_size)

        bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)

        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)

            # Use the max. for normalizing running avg. of gradient
            max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
            # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
            # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
            torch._foreach_div_(
                max_exp_avg_sq_sqrt,
                torch._foreach_mul(bias_correction2_sqrt, step_size))
            eps_over_step_size = torch._foreach_div(step_size, eps)
            torch._foreach_reciprocal_(eps_over_step_size)
            denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps_over_step_size)
        else:
            exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
            torch._foreach_div_(
                exp_avg_sq_sqrt,
                torch._foreach_mul(bias_correction2_sqrt, step_size))
            eps_over_step_size = torch._foreach_div(step_size, eps)
            torch._foreach_reciprocal_(eps_over_step_size)
            denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size)

        torch._foreach_addcdiv_(params, exp_avgs, denom)
    else:
        bias_correction1 = [1 - beta1**step.item() for step in state_steps]
        bias_correction2 = [1 - beta2**step.item() for step in state_steps]

        step_size = [(lr / bc) * -1 for bc in bias_correction1]

        bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2]

        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)

            # Use the max. for normalizing running avg. of gradient
            max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
            torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction2_sqrt)
            denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
        else:
            exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
            torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
            denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

        torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)