Esempio n. 1
0
    def forward_transform_bruteforce(self, x, logdet=0, context=None):
        warnings.warn('brute force')
        bsz = x.shape[0]
        input_shape = x.shape[1:]

        with torch.enable_grad():
            x.requires_grad_(True)
            F = self.get_potential(x, context)
            f = torch.autograd.grad(F.sum(), x, create_graph=True)[0]

            # TODO: compute Hessian in block mode instead of row-by-row.
            f = f.reshape(bsz, -1)
            H = []
            for i in range(f.shape[1]):
                retain_graph = self.training or (i < (f.shape[1] - 1))
                H.append(
                    torch.autograd.grad(f[:, i].sum(),
                                        x,
                                        create_graph=self.training,
                                        retain_graph=retain_graph)[0])

            # H is (bsz, dim, dim)
            H = torch.stack(H, dim=1)

        f = f.reshape(bsz, *input_shape)
        return f, logdet + torch.slogdet(H).logabsdet
Esempio n. 2
0
    def negative_log_likelihood(self, n_batch=None):
        if n_batch is None:
            ind = torch.arange(self.N)
        else:
            ind = torch.randperm(self.N)[:n_batch]

        sigma = torch.exp(self.log_p_y_sigma)
        K = torch.stack([
            self.kern[m].K(self.X[ind]) + torch.eye(ind.shape[0]) * 1e-5
            for m in range(self.M)
        ])
        q_z_pi = copy.deepcopy(self.q_z_pi)
        q_z_pi[q_z_pi != 0] /= sigma
        B = torch.stack([torch.diag(q_z_pi[m][ind]) for m in range(self.M)])
        sqrtB = torch.sqrt(B)

        R = torch.stack([
            torch.eye(ind.shape[0]) + sqrtB[m].mm(K[m]).mm(sqrtB[m])
            for m in range(self.M)
        ])

        lk_y = torch.zeros(1)
        for m in range(self.M):
            lk_y += self.D * torch.slogdet(R[m])[1]
            lk_y += 0.5 * torch.trace(self.Y[ind].t().mm(sqrtB[m]).mm(
                torch.solve(sqrtB[m], R[m])[0]).mm(self.Y[ind]))

        lk_z = 0.5 * (self.q_z_pi * torch.log(np.pi * 2 * sigma)).sum()

        return (lk_y + lk_z)
Esempio n. 3
0
 def get_weight(self, input, reverse):
     w_shape = self.w_shape
     if not self.LU:
         pixels = thops.pixels(input)
         dlogdet = torch.slogdet(self.weight)[1] * pixels
         if not reverse:
             weight = self.weight.view(w_shape[0], w_shape[1], 1, 1)
         else:
             weight = torch.inverse(self.weight.double()).float()\
                           .view(w_shape[0], w_shape[1], 1, 1)
         return weight, dlogdet
     else:
         self.p = self.p.to(input.device)
         self.sign_s = self.sign_s.to(input.device)
         self.l_mask = self.l_mask.to(input.device)
         self.eye = self.eye.to(input.device)
         l = self.l * self.l_mask + self.eye
         u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(
             self.sign_s * torch.exp(self.log_s))
         dlogdet = thops.sum(self.log_s) * thops.pixels(input)
         if not reverse:
             w = torch.matmul(self.p, torch.matmul(l, u))
         else:
             l = torch.inverse(l.double()).float()
             u = torch.inverse(u.double()).float()
             w = torch.matmul(u, torch.matmul(l, self.p.inverse()))
         return w.view(w_shape[0], w_shape[1], 1, 1), dlogdet
Esempio n. 4
0
def rm_hamiltonian(params,
                   momentum,
                   log_prob_func,
                   jitter,
                   normalizing_const,
                   softabs_const=1e6,
                   sampler=Sampler.HMC,
                   integrator=Integrator.EXPLICIT,
                   metric=Metric.HESSIAN):
    log_prob = log_prob_func(params)
    ndim = params.nelement()
    pi_term = ndim * torch.log(2. * torch.tensor(pi))

    fish, abs_eigenvalues = fisher(params,
                                   log_prob_func,
                                   jitter=jitter,
                                   normalizing_const=normalizing_const,
                                   softabs_const=softabs_const,
                                   metric=metric)
    if metric == Metric.SOFTABS:
        log_det_abs = abs_eigenvalues.log().sum()
    else:
        log_det_abs = torch.slogdet(fish)[1]
    fish_inverse_momentum = cholesky_inverse(fish, momentum)
    quadratic_term = torch.matmul(momentum.view(1, -1), fish_inverse_momentum)
    hamiltonian = -log_prob + 0.5 * pi_term + 0.5 * log_det_abs + 0.5 * quadratic_term
    if util.has_nan_or_inf(hamiltonian):
        print('Invalid hamiltonian, log_prob: {}, params: {}, momentum: {}'.
              format(log_prob, params, momentum))
        raise util.LogProbError()
    # if NN_flag:
    #     return hamiltonian, params
    # else:
    return hamiltonian
Esempio n. 5
0
    def get_weight(self, input, reverse):
        w_shape = self.w_shape
        pixels = list(input.size())[-1]
        if not self.LU:

            #thops.pixels(input)
            dlogdet = (torch.slogdet(self.weight)[1])  #* pixels*pixels
            if not reverse:
                weight = self.weight  #.view(w_shape[0], w_shape[1], 1, 1)
            else:
                weight = torch.inverse(self.weight.double()).float(
                )  #.view(w_shape[0], w_shape[1], 1, 1)
            return weight, dlogdet
        else:
            self.p = self.p.to(input.device)
            self.sign_s = self.sign_s.to(input.device)
            self.l_mask = self.l_mask.to(input.device)
            self.eye = self.eye.to(input.device)
            l = self.l * self.l_mask + self.eye
            u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(
                self.sign_s * torch.exp(self.log_s))
            dlogdet = cpd_sum(self.log_s)  #* pixels*pixels
            if not reverse:
                w = torch.matmul(self.p, torch.matmul(l, u))
            else:
                l = torch.inverse(l.double().cpu()).float()
                u = torch.inverse(u.double().cpu()).float()
                w = torch.matmul(u,
                                 torch.matmul(l,
                                              self.p.cpu().inverse())).cuda()
            return w, dlogdet  #view(w_shape[0], w_shape[1], 1, 1)
Esempio n. 6
0
    def get_weight(self, input, reverse):
        b, c, h, w = input.shape

        if not self.LU_decomposed:
            dlogdet = torch.slogdet(self.weight)[1] * h * w
            if reverse:
                weight = torch.inverse(self.weight)
            else:
                weight = self.weight
        else:
            self.l_mask = self.l_mask.to(input.device)
            self.eye = self.eye.to(input.device)

            lower = self.lower * self.l_mask + self.eye

            u = self.upper * self.l_mask.transpose(0, 1).contiguous()
            u += torch.diag(self.sign_s * torch.exp(self.log_s))

            dlogdet = torch.sum(self.log_s) * h * w

            if reverse:
                u_inv = torch.inverse(u)
                l_inv = torch.inverse(lower)
                p_inv = torch.inverse(self.p)

                weight = torch.matmul(u_inv, torch.matmul(l_inv, p_inv))
            else:
                weight = torch.matmul(self.p, torch.matmul(lower, u))

        return weight.view(self.w_shape[0], self.w_shape[1], 1, 1), dlogdet
Esempio n. 7
0
    def get_weight_logdet(self, bs, h, w, inverse):
        logdet = (torch.slogdet(self.weight)[1] * h * w).expand(bs)
        if inverse:
            weight = torch.inverse(self.weight)
        else:
            weight = self.weight

        return weight.view(self.w_shape[0], self.w_shape[1], 1, 1), logdet
Esempio n. 8
0
    def __init__(self, dims_in, M, b):
        super().__init__()

        self.M = nn.Parameter(M.t(), requires_grad=False)
        self.M_inv = nn.Parameter(M.t().inverse(), requires_grad=False)
        self.b = nn.Parameter(b, requires_grad=False)

        self.logDetM = nn.Parameter(torch.slogdet(M)[1], requires_grad=False)
Esempio n. 9
0
    def forward(self, input):
        _, _, height, width = input.shape

        out = F.conv2d(input, self.weight)
        logdet = (height * width *
                  torch.slogdet(self.weight.squeeze().double())[1].float())

        return out, logdet
Esempio n. 10
0
 def inverse(self, x):
     x = x - self.bias
     self.dirty = True
     invlin = self.inv_conv(x)
     logdet = -torch.slogdet(
         torch.squeeze(self.inv_conv.weight.data)
     )[1]  #The log determinant of the inverse matrix is the negative of the forward one.
     #logdet=0
     return (invlin, logdet)
Esempio n. 11
0
 def compute_log_det_per_px(self):
     if self.fixed:
         logdet = self.fixed_log_det
     else:
         if self.use_lu:
             logdet = th.sum(self.w_s)
         else:
             logdet = th.slogdet(self.weight.double())[1].float()
     return logdet
 def forward(self, z):
     w_ = torch.inverse(self.w)
     assert torch.det(w_) > 0.5
     assert torch.det(w_) < 1.5
     forwardLogjac = torch.slogdet(
         w_)[1] * z.shape[-1] * z.shape[-2] * torch.ones(z.shape[0])
     z = torch.matmul(z.permute([0, 2, 3, 1]),
                      w_.reshape(1, 1, *w_.shape)).permute(0, 3, 1, 2)
     return z, forwardLogjac
 def inverse(self, y):
     assert torch.det(self.w) > 0.5
     assert torch.det(self.w) < 1.5
     inverseLogjac = torch.slogdet(
         self.w)[1] * y.shape[-1] * y.shape[-2] * torch.ones(y.shape[0])
     y = torch.matmul(y.permute([0, 2, 3, 1]),
                      self.w.reshape(1, 1,
                                     *self.w.shape)).permute(0, 3, 1, 2)
     return y, inverseLogjac
Esempio n. 14
0
 def forward(ctx,
             input,
             C,
             bias=None,
             beta=1.0,
             isorth=True,
             eps=1e-3,
             margin=-0.5,
             gap=0.5,
             negative_slope=0.1):
     if isinstance(bias, tc.Tensor):
         bias_requires_grad = bias.requires_grad
     else:
         bias_requires_grad = False
     if bias is not None:
         if margin is not None:
             bias = bias - margin
     else:
         if margin is not None:
             bias = -margin
     Num = len(input)
     input.reiter()
     obj0 = 0.0
     obj1 = 0.0
     db = 0.0 if bias_requires_grad else None  #tc.Tensor([0.0])
     dQ = 0.0
     for X, _ in input:
         #            ipdb.set_trace()
         f = X.mm(C)
         if bias is not None:
             f.add_(bias)
         g = tc.zeros(f.size())
         f[0 <= f] = 1.0
         f[f < -gap] = negative_slope
         g[f < 0] = 1.0
         f[f < 0] = eps
         obj0 += -1.0 / Num * f.log_().sum()
         dQ = dQ - 1.0 / Num * X.t().mm(g)
         if bias_requires_grad:
             db = db - 1.0 / Num * f.sum(0)
     K = C.size(1)
     if K == 1:
         G = C.t().mm(C) + eps
         obj1 = -0.5 * G.log()
     else:
         G = C.t().mm(C) + tc.diag(tc.full((C.size(1), ), eps))
         sign, logdet = tc.slogdet(G)
         obj1 = -0.5 * logdet
     dQ = dQ.mm(C.t().mm(C))
     if isorth:
         dC = dQ - C.mm(dQ.t()).mm(C)
     else:
         dC = dQ - C
     argnum = tc.tensor([9])
     ctx.save_for_backward(dC, db, argnum)
     #        ipdb.set_trace()
     return obj0 + obj1
Esempio n. 15
0
 def inverse(self, z):
     if self.use_lu:
         W = self._assemble_W()
         log_det = torch.sum(self.log_S)
     else:
         W = self.W
         log_det = torch.slogdet(self.W)[1]
     z_ = z @ W
     return z_, log_det
Esempio n. 16
0
 def inverse(self, x):
     x = x - self.bias
     invlin = F.conv1d(
         x, torch.unsqueeze(torch.inverse(torch.squeeze(self.linweight)),
                            -1))
     logdet = -torch.slogdet(torch.squeeze(
         self.linweight))[1]  #/self.hparams['dim']
     #print("Conv logdet " + str(logdet))
     return (invlin, logdet)
Esempio n. 17
0
 def forward(self, z: torch.Tensor,
             mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
     # z ~ (batch size, seq length, hidden size)
     out = F.linear(z, self._weight)
     _, logdet = torch.slogdet(self._weight)
     if z.dim() > 2:
         num = torch.einsum("b...->b", mask)
         logdet = logdet * num
     return out, logdet
def adj(A: 'Tensor[N, N]') -> 'Tensor[N, N]':
    """
    Compute the adjugate of a matrix A.
    The adjugate can be used for calculating the derivative of a determinants.
    Function has a runtime of O(N^3).
    """
    Ad = torch.slogdet(A)
    Ad = Ad[0] * torch.exp(Ad[1])
    return Ad * torch.inverse(A).t()
Esempio n. 19
0
    def get_weight(self, x, reverse):
        ldj = torch.slogdet(self.filters)[1] * x.size(2) * x.size(3)
        if reverse:
            weight = torch.inverse(self.filters.double()).float()
        else:
            weight = self.filters
        weight = weight.view(self.num_channels, self.num_channels, 1, 1)

        return weight, ldj
Esempio n. 20
0
 def forward(ctx,
             input,
             C,
             bias=None,
             beta=1.0,
             isorth=True,
             eps=1e-6,
             margin=-1.0,
             alpha=0.8):
     if isinstance(bias, tc.Tensor):
         bias_requires_grad = bias.requires_grad
     else:
         bias_requires_grad = False
     if bias is not None:
         if margin is not None:
             bias = bias - margin
     else:
         if margin is not None:
             bias = -margin
     if bias is not None:
         bias = beta * bias
     C1 = beta * C
     Num = len(input)
     input.reiter()
     obj0 = 0.0
     obj1 = 0.0
     db = 0.0 if bias_requires_grad else None  #tc.Tensor([0.0])
     dQ = 0.0
     for X, _ in input:
         #            ipdb.set_trace()
         f = X.mm(C1)
         if bias is not None:
             f.add_(bias)
         f.sigmoid_()
         g = f.mul(alpha).add_(1.0 - alpha + eps)
         f.mul_(1.0 - f).div_(g)
         dQ = dQ - alpha * beta / Num * X.t().mm(f)
         obj0 += -1.0 / Num * g.log_().sum()
         if bias_requires_grad:
             db = db - alpha * beta / Num * f.sum(0)
     K = C.size(1)
     if K == 1:
         G = C.t().mm(C) + eps
         obj1 = -0.5 * G.log()
     else:
         G = C.t().mm(C) + tc.diag(tc.full((C.size(1), ), eps))
         sign, logdet = tc.slogdet(G)
         obj1 = -0.5 * logdet
     dQ = dQ.mm(C.t().mm(C))
     if isorth:
         dC = dQ - C.mm(dQ.t()).mm(C)
     else:
         dC = dQ - C
     argnum = tc.tensor([8])
     ctx.save_for_backward(dC, db, argnum)
     return obj0 + obj1
 def forward(self, X):
     eps = torch.randn_like(X)
     y = self.dense(eps)
     s, jac = torch.slogdet(self.dense.weight)
     y = torch.sigmoid(y)
     jac = torch.log(y).sum(1) + torch.log(1. - y).sum(1) + jac
     log_pdf_eps = -torch.tensor(X.shape[1] * 0.5 * np.log(2 * np.pi),
                                 device=X.device) - 0.5 * torch.sum(eps**2,
                                                                    dim=1)
     return y, -log_pdf_eps + jac, eps
Esempio n. 22
0
 def forward(self, x):
     '''
     z = Dx + UV^Tx
     ldj = sum(log(abs(D))) + log(abs(det(K)))
     '''
     z = self.d * x + torch.einsum('dr,br->bd', self.U, torch.einsum('rd,bd->br', self.V, x))
     if self.bias is not None: z = z + self.bias
     ldj = self.d.abs().log().sum() + torch.slogdet(self.K)[1]
     ldj = ldj.expand([x.shape[0]])
     return z, ldj
Esempio n. 23
0
    def forward(self, x, sldj, reverse=False):

        # TODO: may not need this if not using InvConv for fc setting.
        if x.ndim == 4:
            ldj = torch.slogdet(self.weight)[1] * x.size(2) * x.size(3)
        else:
            ldj = torch.slogdet(self.weight)[1]

        if reverse:
            weight = torch.inverse(self.weight.double()).float()
            sldj = sldj - ldj
        else:
            weight = self.weight
            sldj = sldj + ldj

        weight = weight.view(self.num_channels, self.num_channels, 1, 1)
        z = F.conv2d(x, weight)

        return z, sldj
Esempio n. 24
0
 def backward(self, z: torch.Tensor,
              mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
     weight_inv = torch.inverse(self._weight.double()).float()
     # z ~ (batch size, seq length, hidden size)
     out = F.linear(z, weight_inv)
     _, logdet = torch.slogdet(weight_inv)
     if z.dim() > 2:
         num = torch.einsum("b...->b", mask)
         logdet = logdet * num
     return out, logdet
Esempio n. 25
0
    def setUp(self):
        self.features = 3
        self.bijection = LinearLU(num_features=self.features, bias=True)

        L, U = self.bijection._create_lower_upper()
        self.weight = L @ U
        self.weight_inverse = torch.inverse(self.weight)
        _, self.logabsdet = torch.slogdet(self.weight)

        self.eps = 1e-5
Esempio n. 26
0
    def reverse(self, output):
        _, _, height, width = output.shape

        in_recover = F.conv2d(
            output,
            self.weight.squeeze().inverse().unsqueeze(2).unsqueeze(3))
        logdet = (-height * width *
                  torch.slogdet(self.weight.squeeze().double())[1].float())

        return in_recover, logdet
Esempio n. 27
0
 def get_weight(self, input, reverse):
     w_shape = self.w_shape
     pixels = thops.pixels(input)
     dlogdet = torch.slogdet(self.weight)[1] * pixels
     if not reverse:
         weight = self.weight.view(w_shape[0], w_shape[1], 1, 1)
     else:
         weight = torch.inverse(self.weight.double()).float() \
             .view(w_shape[0], w_shape[1], 1, 1)
     return weight, dlogdet
Esempio n. 28
0
def test_jacobian(transform):
    x = generate_data(transform)
    try:
        y = transform(x)
        actual = transform.log_abs_det_jacobian(x, y)
    except NotImplementedError:
        pytest.skip('Not implemented.')
    # Test shape
    target_shape = x.shape[:x.dim() - transform.domain.event_dim]
    assert actual.shape == target_shape

    # Expand if required
    transform = reshape_transform(transform, x.shape)
    ndims = len(x.shape)
    event_dim = ndims - transform.domain.event_dim
    x_ = x.view((-1,) + x.shape[event_dim:])
    n = x_.shape[0]
    # Reshape to squash batch dims to a single batch dim
    transform = reshape_transform(transform, x_.shape)

    # 1. Transforms with unit jacobian
    if isinstance(transform, ReshapeTransform) or isinstance(transform.inv, ReshapeTransform):
        expected = x.new_zeros(x.shape[x.dim() - transform.domain.event_dim])
        expected = x.new_zeros(x.shape[x.dim() - transform.domain.event_dim])
    # 2. Transforms with 0 off-diagonal elements
    elif transform.domain.event_dim == 0:
        jac = jacobian(transform, x_)
        # assert off-diagonal elements are zero
        assert torch.allclose(jac, jac.diagonal().diag_embed())
        expected = jac.diagonal().abs().log().reshape(x.shape)
    # 3. Transforms with non-0 off-diagonal elements
    else:
        if isinstance(transform, CorrCholeskyTransform):
            jac = jacobian(lambda x: tril_matrix_to_vec(transform(x), diag=-1), x_)
        elif isinstance(transform.inv, CorrCholeskyTransform):
            jac = jacobian(lambda x: transform(vec_to_tril_matrix(x, diag=-1)),
                           tril_matrix_to_vec(x_, diag=-1))
        elif isinstance(transform, StickBreakingTransform):
            jac = jacobian(lambda x: transform(x)[..., :-1], x_)
        else:
            jac = jacobian(transform, x_)

        # Note that jacobian will have shape (batch_dims, y_event_dims, batch_dims, x_event_dims)
        # However, batches are independent so this can be converted into a (batch_dims, event_dims, event_dims)
        # after reshaping the event dims (see above) to give a batched square matrix whose determinant
        # can be computed.
        gather_idx_shape = list(jac.shape)
        gather_idx_shape[-2] = 1
        gather_idxs = torch.arange(n).reshape((n,) + (1,) * (len(jac.shape) - 1)).expand(gather_idx_shape)
        jac = jac.gather(-2, gather_idxs).squeeze(-2)
        out_ndims = jac.shape[-2]
        jac = jac[..., :out_ndims]  # Remove extra zero-valued dims (for inverse stick-breaking).
        expected = torch.slogdet(jac).logabsdet

    assert torch.allclose(actual, expected, atol=1e-5)
Esempio n. 29
0
 def backward(self, y: torch.tensor, x: torch.tensor=None, x_freqs: torch.tensor=None, require_log_probs=True, var=None, y_freqs=None, to_lat=None):
     # from other language to this language
     x_prime = y.mm(self.W)
     if require_log_probs:
         assert x is not None, x_freqs is not None
         log_probs = self.cal_mixture_of_gaussian_fix_var(x_prime, x, x_freqs, var, x_prime_freqs=y_freqs)
         _, log_abs_det = torch.slogdet(self.W)
         log_probs = log_probs + log_abs_det
     else:
         log_probs = torch.tensor(0)
     return x_prime, log_probs
Esempio n. 30
0
 def blas_lapack_ops(self):
     m = torch.randn(3, 3)
     a = torch.randn(10, 3, 4)
     b = torch.randn(10, 4, 3)
     v = torch.randn(3)
     return (
         torch.addbmm(m, a, b),
         torch.addmm(torch.randn(2, 3), torch.randn(2, 3),
                     torch.randn(3, 3)),
         torch.addmv(torch.randn(2), torch.randn(2, 3), torch.randn(3)),
         torch.addr(torch.zeros(3, 3), v, v),
         torch.baddbmm(m, a, b),
         torch.bmm(a, b),
         torch.chain_matmul(torch.randn(3, 3), torch.randn(3, 3),
                            torch.randn(3, 3)),
         # torch.cholesky(a), # deprecated
         torch.cholesky_inverse(torch.randn(3, 3)),
         torch.cholesky_solve(torch.randn(3, 3), torch.randn(3, 3)),
         torch.dot(v, v),
         torch.eig(m),
         torch.geqrf(a),
         torch.ger(v, v),
         torch.inner(m, m),
         torch.inverse(m),
         torch.det(m),
         torch.logdet(m),
         torch.slogdet(m),
         torch.lstsq(m, m),
         torch.lu(m),
         torch.lu_solve(m, *torch.lu(m)),
         torch.lu_unpack(*torch.lu(m)),
         torch.matmul(m, m),
         torch.matrix_power(m, 2),
         # torch.matrix_rank(m),
         torch.matrix_exp(m),
         torch.mm(m, m),
         torch.mv(m, v),
         # torch.orgqr(a, m),
         # torch.ormqr(a, m, v),
         torch.outer(v, v),
         torch.pinverse(m),
         # torch.qr(a),
         torch.solve(m, m),
         torch.svd(a),
         # torch.svd_lowrank(a),
         # torch.pca_lowrank(a),
         # torch.symeig(a), # deprecated
         # torch.lobpcg(a, b), # not supported
         torch.trapz(m, m),
         torch.trapezoid(m, m),
         torch.cumulative_trapezoid(m, m),
         # torch.triangular_solve(m, m),
         torch.vdot(v, v),
     )