Esempio n. 1
0
    def forward(self, pointcloud: torch.cuda.FloatTensor, return_all=False):
        pointcloud = pointcloud.transpose(1, 2).contiguous()
        li_xyz, li_features = self._break_up_pc(pointcloud)

        # B,C,N
        # l_xyz, l_features = [xyz], [li_features]
        l_xyz, l_features = [], []
        for i in range(len(self.SA_modules)):
            # Pointnetmodule + MLP + maxpool
            li_xyz, li_features = self.SA_modules[i](li_xyz, li_features)
            li_features_post = self.postSA_mlp[i](li_features)
            l_xyz.append(li_xyz)
            l_features.append(li_features_post)

        # max pool (B,4*#SA,1) all SAmodules
        # exclude the first None features
        global_code = torch.cat(
            [torch.max(l_feat, dim=-1)[0] for l_feat in l_features], dim=1)

        l_features.append(global_code)
        l_xyz.append(None)
        if return_all:
            return l_features, l_xyz
        else:
            return global_code
Esempio n. 2
0
    def forward(self, pointcloud: torch.cuda.FloatTensor):
        r"""
            Forward pass of the network
            Parameters
            ----------
            pointcloud: Variable(torch.cuda.FloatTensor)
                (B, N, 3 + input_channels) tensor
                Point cloud to run predicts on
                Each point in the point-cloud MUST
                be formated as (x, y, z, features...)
        """

        pointcloud = pointcloud.transpose(1, 2)
        xyz, features = self._break_up_pc(pointcloud)
        cls = torch.zeros(pointcloud.size(0), 16).cuda()

        l_xyz, l_features = [xyz], [features]
        for i in range(len(self.SA_modules)):
            if i < 5:
                li_xyz, li_features = self.SA_modules[i](l_xyz[i],
                                                         l_features[i])
                if li_xyz is not None:
                    random_index = np.arange(li_xyz.size()[1])
                    np.random.shuffle(random_index)
                    li_xyz = li_xyz[:, random_index, :]
                    li_features = li_features[:, :, random_index]
                l_xyz.append(li_xyz)
                l_features.append(li_features)

        _, global_out2_feat = self.SA_modules[5](l_xyz[3], l_features[3])

        for i in range(-1, -(len(self.FP_modules) + 1), -1):
            l_features[i - 1 - 1] = self.FP_modules[i](l_xyz[i - 1 - 1],
                                                       l_xyz[i - 1],
                                                       l_features[i - 1 - 1],
                                                       l_features[i - 1])

        cls = cls.view(-1, 16, 1).repeat(
            1, 1, l_features[0].size()[2])  # object class one-hot-vector
        l_features[0] = torch.cat(
            (l_features[0], l_features[-1].repeat(1, 1,
                                                  l_features[0].size()[2]),
             global_out2_feat.repeat(1, 1, l_features[0].size()[2]), cls), 1)
        return self.FC_layer(l_features[0]).transpose(1, 2).contiguous()
Esempio n. 3
0
    def forward(self, pointcloud: torch.cuda.FloatTensor):
        r"""
            Forward pass of the network

            Parameters
            ----------
            pointcloud: Variable(torch.cuda.FloatTensor)
                (B, N, 3 + input_channels) tensor
                Point cloud to run predicts on
                Each point in the point-cloud MUST
                be formated as (x, y, z, features...)
        """
        pointcloud = pointcloud.transpose(1, 2)
        xyz, features = self._break_up_pc(pointcloud)
        for module in self.SA_modules:
            xyz, features = module(xyz, features)
        logits = self.FC_layer(features.squeeze(-1))
        #print(logits)
        return logits, None