def __init__(self, in_channels, hidden_channels, out_channels, drop_out=0.1): super(SAGENet, self).__init__() self.conv1 = SAGEConv(in_channels, hidden_channels) self.conv2 = SAGEConv(hidden_channels, hidden_channels) self.conv3 = SAGEConv(hidden_channels, hidden_channels) self.lin = torch.nn.Linear(3 * hidden_channels, out_channels) self.drop_out = drop_out
def __init__(self, in_channels, out_channels): super().__init__() self.convs = torch.nn.ModuleList() self.convs.append(SAGEConv(in_channels, 16)) self.convs.append(SAGEConv(16, 16)) self.convs.append(SAGEConv(16, out_channels))
def __init__(self, input_dim): super(SimpleNetWSage, self).__init__() self.conv_succ1 = SAGEConv(input_dim, 64, flow="target_to_source") # self.conv_succ2 = GCNConv(128, 128, flow="target_to_source") self.conv_succ3 = SAGEConv(64, 64, flow="target_to_source") self.conv_succ2 = SAGEConv(64, 64, flow="target_to_source") self.conv_succ4 = SAGEConv(64, 64, flow="target_to_source") self.conv_probs = SAGEConv(64, 1, flow="target_to_source") self.do_nothing = Linear(64, 1) self.value = Linear(64, 1)
def __init__(self, in_channels, hidden_channels, out_channels, num_layers, dropout): super(SAGE, self).__init__() self.convs = torch.nn.ModuleList() self.convs.append(SAGEConv(in_channels, hidden_channels)) for _ in range(num_layers - 2): self.convs.append(SAGEConv(hidden_channels, hidden_channels)) self.convs.append(SAGEConv(hidden_channels, out_channels)) self.dropout = dropout
def __init__(self, in_channels: int, hidden_channels: int, num_layers: int, out_channels: Optional[int] = None, dropout: float = 0.0, act: Optional[Callable] = ReLU(inplace=True), norm: Optional[torch.nn.Module] = None, jk: str = 'last', **kwargs): super().__init__(in_channels, hidden_channels, num_layers, out_channels, dropout, act, norm, jk) self.convs.append(SAGEConv(in_channels, hidden_channels, **kwargs)) for _ in range(1, num_layers): self.convs.append( SAGEConv(hidden_channels, hidden_channels, **kwargs))
def __init__( self, input_channels: int, output_channels: int, aggr: str, activation_name: _typing.Optional[str] = ..., dropout_probability: _typing.Optional[float] = ..., ): super().__init__() self._convolution: SAGEConv = SAGEConv(input_channels, output_channels, aggr=aggr) if (activation_name is not Ellipsis and activation_name is not None and type(activation_name) == str): self._activation_name: _typing.Optional[str] = activation_name else: self._activation_name: _typing.Optional[str] = None if (dropout_probability is not Ellipsis and dropout_probability is not None and type(dropout_probability) == float): if dropout_probability < 0: dropout_probability = 0 if dropout_probability > 1: dropout_probability = 1 self._dropout: _typing.Optional[ torch.nn.Dropout] = torch.nn.Dropout(dropout_probability) else: self._dropout: _typing.Optional[torch.nn.Dropout] = None
def __init__(self, input_dimension: int, dimensions: _typing.Sequence[int], _act: _typing.Optional[str], _dropout: _typing.Optional[float], aggr: _typing.Optional[str]): super(_SAGE, self).__init__() self._act: _typing.Optional[str] = _act self._dropout: _typing.Optional[float] = _dropout self.__convolution_layers: torch.nn.ModuleList = torch.nn.ModuleList() for layer, output_dimension in enumerate(dimensions): self.__convolution_layers.append( SAGEConv(input_dimension if layer == 0 else dimensions[layer - 1], output_dimension, aggr=aggr))
def __init__(self, in_channels, out_channels): super(Net, self).__init__() self.conv1 = SAGEConv(in_channels, 16) self.conv2 = SAGEConv(16, 16) self.conv3 = SAGEConv(16, out_channels)
def init_conv(self, in_channels: Union[int, Tuple[int, int]], out_channels: int, **kwargs) -> MessagePassing: return SAGEConv(in_channels, out_channels, **kwargs)
def __init__(self, in_channels, out_channels): super(SAGENet, self).__init__() self.conv1 = SAGEConv(in_channels, 16, normalize=False) self.conv2 = SAGEConv(16, out_channels, normalize=False)
def init_conv(self, in_channels: int, out_channels: int, **kwargs) -> MessagePassing: return SAGEConv(in_channels, out_channels, **kwargs)
def __init__(self): super(Net, self).__init__() self.conv1 = SAGEConv(dataset.num_features, 16) self.conv2 = SAGEConv(16, 16) self.conv3 = SAGEConv(16, dataset.num_classes)