Esempio n. 1
0
def run_experiment(args):
    """
    Performing experiment for the given arguments
    """
    dataset, data = load_data(args.dataset)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Define Model
    encoder = create_encoder(args.model, dataset.num_features,
                             args.latent_dim).to(device)
    decoder = create_decoder(args.decoder).to(device)

    if args.model == 'GAE':
        model = GAE(encoder=encoder, decoder=decoder).to(device)
    else:
        model = VGAE(encoder=encoder, decoder=decoder).to(device)

    # Split edges of a torch_geometric.data.Data object into pos negative train/val/test edges
    # default ratios of positive edges: val_ratio=0.05, test_ratio=0.1
    print("Data.edge_index.size", data.edge_index.size(1))
    data = model.split_edges(data)
    node_features, train_pos_edge_index = data.x.to(
        device), data.train_pos_edge_index.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    def train_epoch():
        """
        Performing training over a single epoch and optimize over loss
        :return: log - loss of training loss
        """
        # Todo: Add logging of results

        model.train()
        optimizer.zero_grad()
        # Compute latent embedding Z
        latent_embeddings = model.encode(node_features, train_pos_edge_index)

        # Calculate loss and
        loss = model.recon_loss(latent_embeddings, train_pos_edge_index)
        if args.model in ['VGAE']:
            loss = loss + (1 / data.num_nodes) * model.kl_loss()

        # Compute gradients
        loss.backward()
        # Perform optimization step
        optimizer.step()

        # print("Train-Epoch: {} Loss: {}".format(epoch, loss))

        # ToDo: Add logging via Tensorboard
        log = {'loss': loss}

        return log

    def test(pos_edge_index, neg_edge_index):
        model.eval()
        with torch.no_grad():
            # compute latent var
            z = model.encode(node_features, train_pos_edge_index)

        # model.test return - AUC, AP
        return model.test(z, pos_edge_index, neg_edge_index)

    def test_naive_graph(z, sample_size=1000):

        if args.sample_dense_evaluation:
            graph_type = "sampled"
            z_sample, index_mapping = sample_graph(z, sample_size)
            t = time.time()
            adjacency = model.decoder.forward_all(
                z_sample, sigmoid=(args.decoder == 'dot'))
        else:
            graph_type = "full"
            t = time.time()
            adjacency = model.decoder.forward_all(
                z, sigmoid=(args.decoder == 'dot'))

        print(f"Computing {graph_type} graph took {time.time() - t} seconds.")
        print(
            f"Adjacency matrix takes {adjacency.element_size() * adjacency.nelement() / 10 ** 6} MB of memory."
        )

        if args.min_sim_absolute_value is None:
            args.min_sim_absolute_value, _ = sample_percentile(
                args.min_sim,
                adjacency,
                dist_measure=args.decoder,
                sample_size=sample_size)

        if args.sample_dense_evaluation:
            precision, recall = sampled_dense_precision_recall(
                data, adjacency, index_mapping, args.min_sim_absolute_value)
        else:
            precision, recall = dense_precision_recall(
                data, adjacency, args.min_sim_absolute_value)

        print("Predicted {} adjacency matrix has precision {} and recall {}!".
              format(graph_type, precision, recall))

        return precision, recall

    def sample_graph(z, sample_size):
        N, D = z.shape

        sample_size = min(sample_size, N)
        sample_ix = np.random.choice(np.arange(N),
                                     size=sample_size,
                                     replace=False)

        # Returns the sampled embeddings, and a mapping from their indices to the originals
        return z[sample_ix], {i: sample_ix[i] for i in np.arange(sample_size)}

    def test_compare_lsh_naive_graphs(z, assure_correctness=True):
        """

        :param z:
        :param assure_correctness:
        :return:
        """
        # Naive Adjacency-Matrix (Non-LSH-Version)
        t = time.time()
        # Don't use sigmoid in order to directly compare thresholds with LSH
        naive_adjacency = model.decoder.forward_all(
            z, sigmoid=(args.decoder == 'dot'))
        naive_time = time.time() - t
        naive_size = naive_adjacency.element_size() * naive_adjacency.nelement(
        ) / 10**6

        if args.min_sim_absolute_value is None:
            args.min_sim_absolute_value, _ = sample_percentile(
                args.min_sim, z, dist_measure=args.decoder)

        print(
            "______________________________Naive Graph Computation KPI____________________________________________"
        )
        print(f"Computing naive graph took {naive_time} seconds.")
        print(f"Naive adjacency matrix takes {naive_size} MB of memory.")

        # LSH-Adjacency-Matrix:
        t = time.time()
        lsh_adjacency = LSHDecoder(bands=args.lsh_bands,
                                   rows=args.lsh_rows,
                                   verbose=True,
                                   assure_correctness=assure_correctness,
                                   sim_thresh=args.min_sim_absolute_value)(z)
        lsh_time = time.time() - t
        lsh_size = lsh_adjacency.element_size() * lsh_adjacency._nnz() / 10**6

        print(
            "__________________________________LSH Graph Computation KPI__________________________________________"
        )
        print(f"Computing LSH graph took {lsh_time} seconds.")
        print(f"Sparse adjacency matrix takes {lsh_size} MB of memory.")

        print(
            "________________________________________Precision-Recall_____________________________________________"
        )
        # 1) Evaluation: Both Adjacency matrices against ground truth graph
        naive_precision, naive_recall = dense_precision_recall(
            data, naive_adjacency, args.min_sim_absolute_value)

        lsh_precision, lsh_recall = sparse_precision_recall(
            data, lsh_adjacency)

        print(
            f"Naive-Precision {naive_precision}; Naive-Recall {naive_recall}")
        print(f"LSH-Precision {lsh_precision}; LSH-Recall {lsh_recall}")

        print(
            "_____________________________Comparison Sparse vs Dense______________________________________________"
        )
        # 2) Evation: Compare both adjacency matrices against each other
        compare_precision, compare_recall = sparse_v_dense_precision_recall(
            naive_adjacency, lsh_adjacency, args.min_sim_absolute_value)
        print(
            f"LSH sparse matrix has {compare_precision} precision and {compare_recall} recall w.r.t. the naively generated dense matrix!"
        )

        return naive_precision, naive_recall, naive_time, naive_size, lsh_precision, lsh_recall, lsh_time, lsh_size, compare_precision, compare_recall

    # Training routine
    early_stopping = EarlyStopping(args.use_early_stopping,
                                   patience=args.early_stopping_patience,
                                   verbose=True)

    logs = []

    if args.load_model and os.path.isfile("checkpoint.pt"):
        print("Loading model from savefile...")
        model.load_state_dict(torch.load("checkpoint.pt"))

    if not (args.load_model and args.early_stopping_patience == 0):
        for epoch in range(1, args.epochs):
            log = train_epoch()
            logs.append(log)

            # Validation metrics
            val_auc, val_ap = test(data.val_pos_edge_index,
                                   data.val_neg_edge_index)
            print('Validation-Epoch: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(
                epoch, val_auc, val_ap))

            # Stop training if validation scores have not improved
            early_stopping(val_ap, model)
            if early_stopping.early_stop:
                print("Applying early-stopping")
                break
    else:
        epoch = 0

    # Load best encoder
    print("Load best model for evaluation.")
    model.load_state_dict(torch.load('checkpoint.pt'))
    print(
        "__________________________________________________________________________"
    )
    # Training is finished, calculate test metrics
    test_auc, test_ap = test(data.test_pos_edge_index,
                             data.test_neg_edge_index)
    print('Test Results: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(
        epoch, test_auc, test_ap))

    # Check if early stopping was applied or not - if not: model might not be done with training
    if args.epochs == epoch + 1:
        print("Model might need more epochs - Increase number of Epochs!")

    # Evaluate full graph
    latent_embeddings = model.encode(node_features, train_pos_edge_index)

    # Save embeddings to embeddings folder if flag is set
    if args.save_embeddings:
        embeddings_folder = osp.join(osp.dirname(osp.abspath(__file__)),
                                     'embeddings')
        if not osp.isdir(embeddings_folder):
            os.makedirs(embeddings_folder)

        torch.save(
            latent_embeddings,
            osp.join(embeddings_folder,
                     args.dataset + "_" + args.decoder + ".pt"))

    if not args.lsh:
        # Compute precision recall w.r.t the ground truth graph
        graph_precision, graph_recall = test_naive_graph(latent_embeddings)
        del model
        del encoder
        del decoder
        torch.cuda.empty_cache()
    else:
        # Precision w.r.t. the generated graph
        naive_precision, naive_recall, naive_time, naive_size, lsh_precision, \
        lsh_recall, lsh_time, lsh_size, \
        compare_precision, compare_recall = test_compare_lsh_naive_graphs(
            latent_embeddings)

        del model
        del encoder
        del decoder
        torch.cuda.empty_cache()

        return {
            'args': args,
            'test_auc': test_auc,
            'test_ap': test_ap,
            'naive_precision': naive_precision,
            'naive_recall': naive_recall,
            'naive_time': naive_time,
            'naive_size': naive_size,
            'lsh_precision': lsh_precision,
            'lsh_recall': lsh_recall,
            'lsh_time': lsh_time,
            'lsh_size': lsh_size,
            'compare_precision': compare_precision,
            'compare_recall': compare_recall
        }
Esempio n. 2
0
class UnsGAE(object):

    def __init__(self, data, embed_dim, **kwargs):
        super(UnsGAE, self).__init__()
        self.data = data
        self.input_dim = self.data.dim
        self.embed_dim = embed_dim

        # for now, we only work with 2-layer encoders
        self.hidden_dim = kwargs.get('hidden_dim', 2*embed_dim)
        self.encoder = kwargs.get('encoder', batched_SAGEEncoder)
        self.encoder = self.encoder(self.input_dim,
                                    self.hidden_dim,
                                    self.embed_dim)
        self.model = GAE(self.encoder)

        # preparing the device 
        device = kwargs.get('device', 'cuda')
        if device=='gpu' and not(torch.cuda.is_available()):
            print('CUDA is not available in PyTorch. the model ' +\
                  'will be initiated on CPU.')
            device = 'cpu'
        self.device = torch.device(device)

        
    def init_model(self, sizes, weights_path=None):
        self.model = self.model.to(self.device)
        
        # sizes are directly used for initializing the model
        # but it will be used for every feed-forward as the
        # sampling size of the neighbors
        assert len(sizes)==self.model.encoder.num_layers, \
            'Number of sizes should be equal to the number of layers in the encoder.'
        self.sizes = sizes
        if not(hasattr(self.data, 'loader')):
            self.data.get_neighbor_sampler(self.sizes)

        if weights_path is not None:
            self.model.load_state_dict(torch.load(weights_path, map_location=self.device))
            
        
    def init_training(self, neg_num, optim='Adam', lr=1e-5, smooth_par=0.75):
        if optim=='Adam':
            self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr)
        elif optim=='SGD':
            self.optimizer = torch.optim.SGD(self.model.parameters(), lr=lr)
        self.train_one_epoch = self._train_edge_batching
        self.neg_num = neg_num

        if not(hasattr(self.data, 'pos_pairs')):
            assert 'pos_samples_path' in kwargs, 'The provided data does ' +\
                'not come with positive pairs, and we need a path to the ' +\
                'already selected positive samples. You can provide it through ' +\
                'input pos_samples_path .'
            include_nodes = kwargs.get('include_nodes', None)
            self.data.load_positive_pairs(kwargs['pos_samples_path'], include_nodes)
            
        if not(hasattr(self.data, 'neg_sampler')):
            #smooth_par = kwargs.get('smooth_par', 0.75)
            self.data.get_negative_sampler(smooth_par)

        if not(hasattr(self.data, 'x_all')):
            self.data._fetch_node_features()

        
    def init_validation(self):
        if not(hasattr(self.data, 'x_all')):
            self.data._fetch_node_features()
        

    def embed_some(self, sample_inds, b=100):
        """This will be used in the training, when the
        embedding of a batch of samples are needed
        """

        quot, rem = np.divmod(len(sample_inds), b)

        Z = []
        for i in range(quot+1):
            if i<quot:
                b_ids = sample_inds[i*b:(i+1)*b]
            elif rem>0:
                b_ids = sample_inds[i*b:]
                
            # neighbor-sampling for each sample
            _, n_id, adjs = self.data.train_loader.sample(b_ids)
            adjs = [adj.to(self.device) for adj in adjs]

            # get feature vectors through the neighbors sampled above
            batch_X = torch.from_numpy(self.data.get_node_features(n_id))
            batch_X = batch_X.to(torch.float).to(self.device)

            # the encoder's output as the embedding
            try:
                batch_Z = self.model.encoder(batch_X, adjs)
            except:
                pdb.set_trace()
            Z += [batch_Z]

        Z = torch.cat(Z, dim=0)
        return Z

    def embed_all(self):

        L = self.model.encoder.num_layers
        pbar = tqdm(total=self.data.n_x * L, position=0, leave=True)
        pbar.set_description('Evaluating')
        
        self.model.encoder.eval()
        # inference is used in the evaluation stage (not in training) when
        # the embeddings for "all" nodes will be computed. It's written in a way
        # that is faster than the foward-passing function which is mostly used
        # for single batches in the training
        with torch.no_grad():
            for i in range(L):
                xs = []
                for batch_size, n_id, adj in self.data.test_loader:
                    edge_index, _, size = adj.to(self.device)
                    if i==0:
                        x = torch.from_numpy(self.data.get_node_features(n_id))
                        x = x.to(torch.float).to(self.device)
                    else:
                        x = x_all[n_id,:].to(self.device)

                    x_target = x[:size[1]]
                    x = self.model.encoder.convs[i]((x,x_target), edge_index)
                    if i != L-1:
                        x = F.relu(x)

                    xs.append(x[:batch_size,:].cpu())
                    
                    pbar.update(batch_size)

                x_all = torch.cat(xs, dim=0)
                
        pbar.close()
        
        return x_all
    
            
    def _train_edge_batching(self, ep, batch_size=5000):

        assert hasattr(self.data, 'pos_pairs'), 'Positive and negative ' + \
            'samples must be generated before starting the training'
        
        self.model.train()
        neg_num = self.neg_num

        torch.multiprocessing.set_sharing_strategy('file_system')
        pbar = tqdm(total=self.data.pos_pairs.shape[1], position=0, leave=True)
        pbar.set_description(f'Epoch {ep:02d}')
        
        total_loss = 0
        np.random.shuffle(self.data.pos_pairs.T)
        quot, rem = np.divmod(self.data.pos_pairs.shape[1], batch_size)

        for i in range(quot+1):

            # positive mini-batch
            # (#: batch size)
            if i<quot:
                batch_pos_pairs = self.data.pos_pairs[:,i*batch_size:(i+1)*batch_size]
            else:
                batch_pos_pairs = self.data.pos_pairs[:,i*batch_size:]
            batch_pos_samples, pos_edge_index = np.unique(batch_pos_pairs,
                                                          return_inverse=True)
            pos_edge_index = pos_edge_index.reshape(batch_pos_pairs.shape)

            # negative mini-batch
            # (#: batch_size * neg_num)
            batch_neg_samples = self.data.neg_sampler.sample(
                torch.Size([neg_num*batch_pos_pairs.shape[1]]))
            neg_edge_index = np.array([np.repeat(pos_edge_index[0,:],neg_num),
                                       np.arange(pos_edge_index.max()+1,
                                                 pos_edge_index.max()+len(batch_neg_samples)+1)])

            # embeddings of the nodes involved in + and - edges
            self.optimizer.zero_grad()
            unodes = batch_pos_samples.tolist() + batch_neg_samples.tolist()
            Z = self.embed_some(unodes)

            # reconstruction loss
            pos_edge_index = torch.from_numpy(pos_edge_index).to(self.device)
            neg_edge_index = torch.from_numpy(neg_edge_index).to(self.device)
            loss = self.model.recon_loss(Z, pos_edge_index, neg_edge_index)
            loss.backward()
            self.optimizer.step()

            total_loss += float(loss)

            pbar.update(batch_size)

        pbar.close()

        loss = total_loss / (quot+1)
        return loss


    def validate(self):

        self.model.eval()

        Z = self.embed_all()
        ents_Z = Z[:-1,:][self.data.selected_inds[:-1]>=self.data.nA,:].detach().numpy()
        prop_Z = Z[self.data.tags=='prop',:].detach().numpy()
        scores = np.dot(ents_Z, prop_Z.T).squeeze()
        
        sorted_ents = self.data.selected_ents[np.argsort(-scores)]
        unstudied_sorted_ents = np.array([x for x in sorted_ents
                                           if x not in self.data.studied_ents])
        preds = unstudied_sorted_ents[:50]

        prec = np.isin(preds,self.data.GT).sum() / len(preds)

        return prec