Esempio n. 1
0
 def __init__(self, in_dim, z_dim, edge_index, edge_weight, h_dim=256):
     """
     Args:
         in_dim (int): dimensionality of the input
         z_dim (int): dimensionality of the low-dimensional space
         edge_index (LongTensor): shape (2, ?), edge indices
         edge_weight (FloatTensor): shape (?), edge weights.
         h_dim (int): dimensionality of intermediate layers in MLP
         
     """
     super(Encoder, self).__init__()
     self.edge_index = edge_index
     self.edge_weight = edge_weight
     self.fn = nn.Sequential(
         nn.Linear(in_dim, h_dim, bias=True),
         nn.GELU(),
         nn.Linear(h_dim, h_dim, bias=True),
         nn.GELU(),
     )
     self.gc = Sequential(
         "x, edge_index, edge_weight",
         [
             (GCNConv(h_dim, z_dim, cached=False, add_self_loops=True),
              "x, edge_index, edge_weight -> x"),
             #   nn.BatchNorm1d(z_dim),
             nn.GELU(),
             (GCNConv(z_dim, z_dim, cached=False, add_self_loops=True),
              "x, edge_index, edge_weight -> x"),
             #   nn.BatchNorm1d(z_dim),
             nn.GELU(),
             nn.Linear(z_dim, z_dim)
         ])
     self.gen = nn.Sequential(nn.Linear(z_dim, z_dim, bias=True))
Esempio n. 2
0
def test_sequential_tracable():
    model = Sequential('x, edge_index', [
        (GCNConv(16, 64), 'x, edge_index -> x1'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x1, edge_index -> x2'),
        ReLU(inplace=True),
        (lambda x1, x2: x1 + x2, 'x1, x2 -> x'),
        Linear(64, 7),
    ])
    symbolic_trace(model)
    def __init__(self, num_features, hidden_channels_list, num_classes):
        super(GAT, self).__init__()
        torch.manual_seed(12345)
        hns = [num_features] + hidden_channels_list
        conv_list = []
        for idx in range(len(hidden_channels_list)):
            conv_list.append((GATConv(hns[idx], hns[idx+1]), 'x, edge_index -> x'))
            conv_list.append(ReLU(inplace=True),)

        self.convseq = Sequential('x, edge_index', conv_list)
        self.linear = Linear(hidden_channels_list[-1], num_classes)
Esempio n. 4
0
def test_sequential_jittable():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    adj_t = SparseTensor(row=edge_index[0], col=edge_index[1]).t()

    model = Sequential('x: Tensor, edge_index: Tensor', [
        (GCNConv(16, 64).jittable(), 'x, edge_index -> x'),
        ReLU(inplace=True),
        (GCNConv(64, 64).jittable(), 'x, edge_index -> x'),
        ReLU(inplace=True),
        Linear(64, 7),
    ])
    torch.jit.script(model)(x, edge_index)

    model = Sequential('x: Tensor, edge_index: SparseTensor', [
        (GCNConv(16, 64).jittable(), 'x, edge_index -> x'),
        ReLU(inplace=True),
        (GCNConv(64, 64).jittable(), 'x, edge_index -> x'),
        ReLU(inplace=True),
        Linear(64, 7),
    ])
    torch.jit.script(model)(x, adj_t)
Esempio n. 5
0
def test_sequential_with_multiple_return_values():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])

    model = Sequential('x, edge_index', [
        (GCNConv(16, 32), 'x, edge_index -> x1'),
        (GCNConv(32, 64), 'x1, edge_index -> x2'),
        (lambda x1, x2: (x1, x2), 'x1, x2 -> x1, x2'),
    ])

    x1, x2 = model(x, edge_index)
    assert x1.size() == (4, 32)
    assert x2.size() == (4, 64)
Esempio n. 6
0
def test_sequential():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    batch = torch.zeros(4, dtype=torch.long)

    model = Sequential('x, edge_index', [
        (GCNConv(16, 64), 'x, edge_index -> x'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x, edge_index -> x'),
        ReLU(inplace=True),
        Linear(64, 7),
    ])
    model.reset_parameters()

    assert len(model) == 5
    assert str(model) == (
        'Sequential(\n'
        '  (0): GCNConv(16, 64)\n'
        '  (1): ReLU(inplace=True)\n'
        '  (2): GCNConv(64, 64)\n'
        '  (3): ReLU(inplace=True)\n'
        '  (4): Linear(in_features=64, out_features=7, bias=True)\n'
        ')')

    assert isinstance(model[0], GCNConv)
    assert isinstance(model[1], ReLU)
    assert isinstance(model[2], GCNConv)
    assert isinstance(model[3], ReLU)
    assert isinstance(model[4], Linear)

    out = model(x, edge_index)
    assert out.size() == (4, 7)

    model = Sequential('x, edge_index, batch', [
        (Dropout(p=0.5), 'x -> x'),
        (GCNConv(16, 64), 'x, edge_index -> x1'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x1, edge_index -> x2'),
        ReLU(inplace=True),
        (lambda x1, x2: [x1, x2], 'x1, x2 -> xs'),
        (JumpingKnowledge('cat', 64, num_layers=2), 'xs -> x'),
        (global_mean_pool, 'x, batch -> x'),
        Linear(2 * 64, 7),
    ])
    model.reset_parameters()

    out = model(x, edge_index, batch)
    assert out.size() == (1, 7)
Esempio n. 7
0
def test_sequential_with_ordered_dict():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])

    model = Sequential(
        'x, edge_index', modules=OrderedDict([
            ('conv1', (GCNConv(16, 32), 'x, edge_index -> x')),
            ('conv2', (GCNConv(32, 64), 'x, edge_index -> x')),
        ]))

    assert isinstance(model.conv1, GCNConv)
    assert isinstance(model.conv2, GCNConv)

    x = model(x, edge_index)
    assert x.size() == (4, 64)
Esempio n. 8
0
    def __init__(
        self,
        embed_dim: int,
        num_layers: int,
        heads: int = 8,
        normalization: str = "batch",
        feed_forward_hidden: int = 512,
        pooling_method: str = "mean",
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.num_layers = num_layers
        self.heads = heads
        assert (self.embed_dim % self.heads) == 0
        self.pooling_func = get_pooling_func(pooling_method)
        self.norm_class = get_normalization_class(normalization)
        self.gnn_layer_list = nn.ModuleList()
        self.norm_list = nn.ModuleList()
        for i in range(self.num_layers):
            gnn_layer = TransformerConv(
                in_channels=self.embed_dim,
                out_channels=self.embed_dim // self.heads,
                heads=self.heads,
                edge_dim=self.embed_dim,
            )
            self.gnn_layer_list.append(gnn_layer)
            self.norm_list.append(GraphNorm(in_channels=self.embed_dim))

        self.feed_forward = Sequential(
            "x, batch",
            [
                (nn.Linear(self.embed_dim, feed_forward_hidden), "x -> x"),
                nn.GELU(),
                # (GraphNorm(in_channels=feed_forward_hidden), "x, batch -> x"),
                nn.Linear(feed_forward_hidden, self.embed_dim),
            ],
        )
        self.ff_norm = GraphNorm(in_channels=self.embed_dim)
                                **kwargs)
else:
    train_loader = HGTLoader(data,
                             num_samples=[1024] * 4,
                             shuffle=True,
                             input_nodes=train_input_nodes,
                             **kwargs)
    val_loader = HGTLoader(data,
                           num_samples=[1024] * 4,
                           input_nodes=val_input_nodes,
                           **kwargs)

model = Sequential('x, edge_index', [
    (SAGEConv((-1, -1), 64), 'x, edge_index -> x'),
    ReLU(inplace=True),
    (SAGEConv((-1, -1), 64), 'x, edge_index -> x'),
    ReLU(inplace=True),
    (Linear(-1, dataset.num_classes), 'x -> x'),
])
model = to_hetero(model, data.metadata(), aggr='sum').to(device)


@torch.no_grad()
def init_params():
    # Initialize lazy parameters via forwarding a single batch to the model:
    batch = next(iter(train_loader))
    batch = batch.to(device, 'edge_index')
    model(batch.x_dict, batch.edge_index_dict)


def train():
    def __init__(self, input_feat=2, Conv_outputs=[5], LSTM_output=[5],
                 K=1, linear_output=3):
        super(social_stgcn, self).__init__()

        self.input_feat = input_feat
        self.Conv_outputs = Conv_outputs
        self.LSTM_output = LSTM_output
        self.linear_output = linear_output
        self.K = K

        self.gcn1 = GCNConv(in_channels=self.input_feat,
                            out_channels=self.Conv_outputs[0],
                            improved=True)
        self.gcn2 = GCNConv(in_channels=self.Conv_outputs[0],
                            out_channels=self.Conv_outputs[1],
                            improved=True)

        self.gclstm1 = GConvLSTM(in_channels=self.Conv_outputs[1],
                                 out_channels=self.Conv_outputs[1],
                                 K=K, normalization="sym", bias=True)
        self.gclstm2 = GConvLSTM(in_channels=self.Conv_outputs[1],
                                 out_channels=self.Conv_outputs[1],
                                 K=K, normalization="sym", bias=True)
        self.gclstm3 = GConvLSTM(in_channels=self.Conv_outputs[1],
                                 out_channels=self.LSTM_output[0],
                                 K=K, normalization="sym", bias=True)

        self.no_lstm = 3

        self.linear = nn.Linear(in_features=self.LSTM_output[0],
                                out_features=self.linear_output)

        self.gcn = Sequential('x, edge_index, h_none', [
                                  (GCNConv(in_channels=self.input_feat,
                                           out_channels=self.Conv_outputs[0],
                                           improved=True), 'x, edge_index -> x'),
                                  (nn.ReLU(), 'x -> x'),
                                  (GCNConv(in_channels=self.Conv_outputs[0],
                                           out_channels=self.Conv_outputs[1],
                                           improved=True), 'x, edge_index -> x'),
                                  (nn.ReLU(), 'x -> x'),
                                  (GConvLSTM(in_channels=self.Conv_outputs[1],
                                             out_channels=self.Conv_outputs[1],
                                             K=K, normalization="sym", bias=True), 'x, edge_index -> h, c'),
                                  (GConvLSTM(in_channels=self.Conv_outputs[1],
                                             out_channels=self.Conv_outputs[1],
                                             K=K, normalization="sym", bias=True), 'h, edge_index, h_none, c -> h, c'),
                                  (GConvLSTM(in_channels=self.Conv_outputs[1],
                                             out_channels=self.LSTM_output[0],
                                             K=K, normalization="sym", bias=True), 'h, edge_index, h_none, c-> h, c'),
                                    # TO BE TESTED LATER
                                  # (GCLSTM(in_channels=self.Conv_outputs[1],
                                  #         out_channels=self.LSTM_output[0],
                                  #         K=K, normalization="sym", bias=True), 'x, edge_index -> h, c'),
                                  #
                                  # (GCLSTM(in_channels=self.LSTM_output[0],
                                  #         out_channels=self.LSTM_output[1],
                                  #         K=K, normalization="sym", bias=True), 'x, edge_index, h, c -> h, c'),
                                  #
                                  # (GCLSTM(in_channels=self.LSTM_output[1],
                                  #         out_channels=self.LSTM_output[2],
                                  #         K=K, normalization="sym", bias=True), 'h, edge_index, c -> h, _'),
                                  (nn.ReLU(), "h -> h"),
                                  (nn.Linear(in_features=self.LSTM_output[0],
                                             out_features=self.linear_output), "h -> x")])