Esempio n. 1
0
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision import models
import os

import utils
import torch_utils

torch_utils.init_seeds()

SHOW_IMG = False

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

data_dir = 'C:/Users/62349/Desktop'  # clw note:数据集从网上下载:https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/hotdog.zip
train_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/train'))
test_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/test'))

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
if SHOW_IMG:
    utils.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4)

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
train_augs = transforms.Compose([
Esempio n. 2
0
def init_seeds(seed=0):
    random.seed(seed)
    np.random.seed(seed)
    torch_utils.init_seeds(seed=seed)
Esempio n. 3
0
def train(hyp):
    epochs = opt.epochs  # 300
    batch_size = opt.batch_size  # 64
    #weights = opt.weights  # initial training weights
    random.seed(42)
    np.random.seed(42)
    torch_utils.init_seeds(42)
    # Configure

    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    #train_path = data_dict['train']
    #test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Create model

    config = get_efficientdet_config('tf_efficientdet_d4')
    # 根据上面的配置生成网络
    load_from_pretrained = True

    if (load_from_pretrained):
        model = EfficientDet(config, pretrained_backbone=False)
        # 加载预训练模型
        checkpoint = torch.load(r'./tf_efficientdet_d4-5b370b7a.pth',
                                map_location=device)
        try:
            exclude = ['running_mean',
                       'running_var']  #['anchor', ,,'bn','tracked',]
            checkpoint = {
                k: v
                for k, v in checkpoint.items()
                if k in model.state_dict() and not any(x in k for x in exclude)
                and model.state_dict()[k].shape == v.shape
            }
            model.load_state_dict(checkpoint, strict=False)

            print('Transferred %g/%g items from ' %
                  (len(checkpoint), len(model.state_dict())))
        except KeyError as e:
            s = " is not compatible with . This may be due to model differences or %s may be out of date. " \
                "Please delete or update  and try again, or use --weights '' to train from scratch."

            raise KeyError(s) from e

        config.num_classes = 1
        config.image_size = opt.img_size[0]
        model.class_net = HeadNet(config,
                                  num_outputs=config.num_classes,
                                  norm_kwargs=dict(eps=.001, momentum=.01))
    else:  # load from best,last
        config.num_classes = 1
        config.image_size = opt.img_size[0]
        model = EfficientDet(config, pretrained_backbone=False)
        checkpoint = torch.load(r'./weights/last.pt', map_location=device)  #
        model.load_state_dict(checkpoint['model'].model.state_dict())
        print("load from last.pt\n")

    config.loss_type = opt.loss_type
    model = DetBenchTrain(model, config)
    print("effDet config:", config)

    imgsz, imgsz_test = [x for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg0.append(v)
                #pg2.append(v)  # biases
                #print("bias:",k)
            elif ('.weight' in k or '.edge_weights' in k) and '.bn' not in k:
                pg1.append(v)  # apply weight decay
                #print("weight:",k)
            else:
                pg0.append(v)  # all else
                #print("else:",k)

    optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
        optim.RMSprop(pg0, lr=hyp['lr0'])
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay

    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.9 + 0.1  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Load Model

    start_epoch, best_fitness = 0, 1000.0
    if load_from_pretrained == False:
        if checkpoint['optimizer_state_dict'] is not None:
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            best_fitness = checkpoint['best_summary_loss']
            print("load best loss:", best_fitness)
        if checkpoint['epoch'] is not None:
            start_epoch = checkpoint['epoch'] + 1
            if epochs < start_epoch:
                print(
                    '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                    % (opt.weights, checkpoint['epoch'], epochs))
                epochs += checkpoint['epoch']  # finetune additional epochs
    del checkpoint

    # Mixed precision training https://github.com/NVIDIA/apex
    model.to(device)
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level='O1',
                                          verbosity=0)

    scheduler.last_epoch = start_epoch - 1  # do not move

    # Initialize distributed training
    distribution = False

    # Trainloader
    dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        sampler=RandomSampler(train_dataset),
        pin_memory=True,  #opt.cache_images,
        drop_last=True,
        num_workers=4,
        collate_fn=collate_fn,
    )

    # Testloader
    testloader = torch.utils.data.DataLoader(
        validation_dataset,
        batch_size=batch_size,
        num_workers=3,
        shuffle=False,
        sampler=SequentialSampler(validation_dataset),
        pin_memory=True,  #opt.cache_images,
        collate_fn=collate_fn,
    )

    # Exponential moving average
    ema = torch_utils.ModelEMA(model)
    #print("!!!!!!!!!!!!!!!!!! type model")
    #print(type(model))
    # Start training
    t0 = time.time()
    nb = len(dataloader)  #//4  # number of batches
    n_burn = max(2 * nb,
                 1e3)  # burn-in iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
    print('Using %g dataloader workers' % dataloader.num_workers)
    print('Starting training for %g epochs...' % epochs)
    #anchor = Anchor_config(config)
    #anchor.anchors.to(device)
    #anchor.anchor_labeler.to(device)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        mloss = torch.zeros(3, device='cpu')  # mean losses
        print(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'gpu_mem', 'box', 'cls', 'total', 'targets', 'img_size'))
        #ss = ('\n' + '%5d' * 7)%(0,0,0,0,0,0,0)

        pbar = tqdm(enumerate(dataloader), ncols=180, total=nb)  # progress bar
        for i, (
                images, targets, image_ids
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            #imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
            boxes = [target['boxes'].to(device).float()
                     for target in targets]  # yxyx?
            labels = [
                target['labels'].to(device).float() for target in targets
            ]
            images = torch.stack(images, 0)
            images = images.to(device)  #.float()
            batch_size = images.shape[0]

            # Burn-in

            if ni <= n_burn:
                xi = [0, n_burn]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.0 + gs) // gs * gs  # size
                sf = sz / max(images.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / gs) * gs for x in images.shape[2:]
                    ]  # new shape (stretched to gs-multiple)
                    images = F.interpolate(images,
                                           size=ns,
                                           mode='bilinear',
                                           align_corners=False)

            total_loss, cls_loss, box_loss = model(images, boxes, labels)
            total_loss = torch.mean(total_loss)
            cls_loss = torch.mean(cls_loss)
            box_loss = torch.mean(box_loss)
            if not torch.isfinite(total_loss):
                print('WARNING: non-finite loss, ending training ', cls_loss,
                      box_loss)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(total_loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                total_loss.backward()

            # Optimize
            if ni % accumulate == 0:

                optimizer.step()
                optimizer.zero_grad()

                ema.update(model)

# Print

            mloss = (mloss * i + torch.tensor(
                [box_loss * 50.0, cls_loss, total_loss]).detach()) / (
                    i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.4g' * 5) % ('%g/%g' % (epoch, epochs - 1),
                                               mem, *mloss, boxes[0].shape[0],
                                               images.shape[-1])
            pbar.set_description(s)

            if ni < 3:
                f = 'train_batch%g.jpg' % ni  # filename
                result = plot_images(images=images, targets=boxes, fname=f)

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # mAP

        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            result = validation(model=ema.ema,
                                val_loader=testloader,
                                config=config,
                                device=device)

            #results, maps, times = test.test(opt.data,
            #                                 batch_size=batch_size,
            #                                 imgsz=imgsz_test,
            #                                 save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
            #                                 model=ema.ema,
            #                                 single_cls=opt.single_cls,
            #                                 dataloader=testloader)

            print("val:", result.avg)

        # Write
        with open(results_file, 'a') as f:
            f.write(
                f'[RESULT]:Train loss:{total_loss:.5f} Val. Epoch: {epoch}, summary_loss: {result.avg:.5f} \n'
            )  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        #if len(opt.name) and opt.bucket:
        #    os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

        # Tensorboard

        # Update best mAP
        fi = result.avg  #fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi < best_fitness:
            best_fitness = fi
            print("best_fit,\n")
        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            #with open(results_file, 'r') as f:  # create checkpoint

            #ckpt = {'epoch': epoch,
            #        'best_fitness': best_fitness,
            #        'training_results': f.read(),
            #        'model': ema.ema,
            #        'optimizer': None if final_epoch else optimizer.state_dict()}

            ckpt = {
                'model': ema.ema,
                #'model_state_dict': ema.ema.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'scheduler_state_dict': scheduler.state_dict(),
                'best_summary_loss': best_fitness,
                'epoch': epoch,
            }

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    # Strip optimizers
    n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
    fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
    for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                      [flast, fbest, fresults]):
        if os.path.exists(f1):
            os.rename(f1, f2)  # rename
            ispt = f2.endswith('.pt')  # is *.pt
            strip_optimizer(f2) if ispt else None  # strip optimizer
            os.system(
                'gsutil cp %s gs://%s/weights' %
                (f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    # Finish
    #if not opt.evolve:
    #    plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    dist.destroy_process_group(
    ) if distribution and device.type != 'cpu' and torch.cuda.device_count(
    ) > 1 else None
    torch.cuda.empty_cache()
    return results