def get_complete_network(aev_computer, device, return_networks=False):
    aev_dim = aev_computer.aev_length
    H_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 160),
                                    torch.nn.CELU(0.1),
                                    torch.nn.Linear(160,
                                                    128), torch.nn.CELU(0.1),
                                    torch.nn.Linear(128, 96),
                                    torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

    C_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 144),
                                    torch.nn.CELU(0.1),
                                    torch.nn.Linear(144,
                                                    112), torch.nn.CELU(0.1),
                                    torch.nn.Linear(112, 96),
                                    torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

    N_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 128),
                                    torch.nn.CELU(0.1),
                                    torch.nn.Linear(128,
                                                    112), torch.nn.CELU(0.1),
                                    torch.nn.Linear(112, 96),
                                    torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

    O_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 128),
                                    torch.nn.CELU(0.1),
                                    torch.nn.Linear(128,
                                                    112), torch.nn.CELU(0.1),
                                    torch.nn.Linear(112, 96),
                                    torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

    nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
    model = torchani.nn.Sequential(aev_computer, nn).to(device)
    if return_networks:
        return H_network, C_network, N_network, O_network, model, nn
    return model, nn
Esempio n. 2
0
C_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 144),
                                torch.nn.CELU(0.1), torch.nn.Linear(144, 112),
                                torch.nn.CELU(0.1), torch.nn.Linear(112, 96),
                                torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

N_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 128),
                                torch.nn.CELU(0.1), torch.nn.Linear(128, 112),
                                torch.nn.CELU(0.1), torch.nn.Linear(112, 96),
                                torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

O_network = torch.nn.Sequential(torch.nn.Linear(aev_dim, 128),
                                torch.nn.CELU(0.1), torch.nn.Linear(128, 112),
                                torch.nn.CELU(0.1), torch.nn.Linear(112, 96),
                                torch.nn.CELU(0.1), torch.nn.Linear(96, 1))

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
print(nn)

###############################################################################
# Initialize the weights and biases.
#
# .. note::
#   Pytorch default initialization for the weights and biases in linear layers
#   is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_
#   We initialize the weights similarly but from the normal distribution.
#   The biases were initialized to zero.
#
# .. _TORCH.NN.MODULES.LINEAR:
#   https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear

device = torch.device(parser.device)
builtins = torchani.neurochem.Builtins()
consts = builtins.consts
aev_computer = builtins.aev_computer
shift_energy = builtins.energy_shifter


def atomic():
    model = torch.nn.Sequential(torch.nn.Linear(384, 128), torch.nn.CELU(0.1),
                                torch.nn.Linear(128, 128), torch.nn.CELU(0.1),
                                torch.nn.Linear(128, 64), torch.nn.CELU(0.1),
                                torch.nn.Linear(64, 1))
    return model


model = torchani.ANIModel([atomic() for _ in range(4)])


class Flatten(torch.nn.Module):
    def forward(self, x):
        return x[0], x[1].flatten()


nnp = torch.nn.Sequential(model, Flatten()).to(device)

dataset = torchani.data.AEVCacheLoader(parser.cache_path)
container = torchani.ignite.Container({'energies': nnp})
optimizer = torch.optim.Adam(nnp.parameters())

trainer = ignite.engine.create_supervised_trainer(
    container, optimizer, torchani.ignite.MSELoss('energies'))
Esempio n. 4
0
def benchmark(parser, dataset, use_cuda_extension, force_inference=False):
    synchronize = True
    timers = {}

    def time_func(key, func):
        timers[key] = 0

        def wrapper(*args, **kwargs):
            start = timeit.default_timer()
            ret = func(*args, **kwargs)
            sync_cuda(synchronize)
            end = timeit.default_timer()
            timers[key] += end - start
            return ret

        return wrapper

    Rcr = 5.2000e+00
    Rca = 3.5000e+00
    EtaR = torch.tensor([1.6000000e+01], device=parser.device)
    ShfR = torch.tensor([
        9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00,
        1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00,
        3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00,
        4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00
    ],
                        device=parser.device)
    Zeta = torch.tensor([3.2000000e+01], device=parser.device)
    ShfZ = torch.tensor([
        1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00,
        1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00
    ],
                        device=parser.device)
    EtaA = torch.tensor([8.0000000e+00], device=parser.device)
    ShfA = torch.tensor(
        [9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00],
        device=parser.device)
    num_species = 4
    aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA,
                                        ShfZ, num_species, use_cuda_extension)

    nn = torchani.ANIModel(build_network())
    model = torch.nn.Sequential(aev_computer, nn).to(parser.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.000001)
    mse = torch.nn.MSELoss(reduction='none')

    # enable timers
    torchani.aev.cutoff_cosine = time_func('torchani.aev.cutoff_cosine',
                                           torchani.aev.cutoff_cosine)
    torchani.aev.radial_terms = time_func('torchani.aev.radial_terms',
                                          torchani.aev.radial_terms)
    torchani.aev.angular_terms = time_func('torchani.aev.angular_terms',
                                           torchani.aev.angular_terms)
    torchani.aev.compute_shifts = time_func('torchani.aev.compute_shifts',
                                            torchani.aev.compute_shifts)
    torchani.aev.neighbor_pairs = time_func('torchani.aev.neighbor_pairs',
                                            torchani.aev.neighbor_pairs)
    torchani.aev.neighbor_pairs_nopbc = time_func(
        'torchani.aev.neighbor_pairs_nopbc', torchani.aev.neighbor_pairs_nopbc)
    torchani.aev.triu_index = time_func('torchani.aev.triu_index',
                                        torchani.aev.triu_index)
    torchani.aev.cumsum_from_zero = time_func('torchani.aev.cumsum_from_zero',
                                              torchani.aev.cumsum_from_zero)
    torchani.aev.triple_by_molecule = time_func(
        'torchani.aev.triple_by_molecule', torchani.aev.triple_by_molecule)
    torchani.aev.compute_aev = time_func('torchani.aev.compute_aev',
                                         torchani.aev.compute_aev)
    model[0].forward = time_func('total', model[0].forward)
    model[1].forward = time_func('forward', model[1].forward)
    optimizer.step = time_func('optimizer.step', optimizer.step)

    print('=> start training')
    start = time.time()
    loss_time = 0
    force_time = 0

    for epoch in range(0, parser.num_epochs):

        print('Epoch: %d/%d' % (epoch + 1, parser.num_epochs))
        progbar = pkbar.Kbar(target=len(dataset) - 1, width=8)

        for i, properties in enumerate(dataset):
            species = properties['species'].to(parser.device)
            coordinates = properties['coordinates'].to(
                parser.device).float().requires_grad_(force_inference)
            true_energies = properties['energies'].to(parser.device).float()
            num_atoms = (species >= 0).sum(dim=1, dtype=true_energies.dtype)
            _, predicted_energies = model((species, coordinates))
            # TODO add sync after aev is done
            sync_cuda(synchronize)
            energy_loss = (mse(predicted_energies, true_energies) /
                           num_atoms.sqrt()).mean()
            if force_inference:
                sync_cuda(synchronize)
                force_coefficient = 0.1
                true_forces = properties['forces'].to(parser.device).float()
                force_start = time.time()
                try:
                    sync_cuda(synchronize)
                    forces = -torch.autograd.grad(predicted_energies.sum(),
                                                  coordinates,
                                                  create_graph=True,
                                                  retain_graph=True)[0]
                    sync_cuda(synchronize)
                except Exception as e:
                    alert('Error: {}'.format(e))
                    return
                force_time += time.time() - force_start
                force_loss = (mse(true_forces, forces).sum(dim=(1, 2)) /
                              num_atoms).mean()
                loss = energy_loss + force_coefficient * force_loss
                sync_cuda(synchronize)
            else:
                loss = energy_loss
            rmse = hartree2kcalmol(
                (mse(predicted_energies,
                     true_energies)).mean()).detach().cpu().numpy()
            progbar.update(i, values=[("rmse", rmse)])
            if not force_inference:
                sync_cuda(synchronize)
                loss_start = time.time()
                loss.backward()
                # print('2', coordinates.grad)
                sync_cuda(synchronize)
                loss_stop = time.time()
                loss_time += loss_stop - loss_start
                optimizer.step()
                sync_cuda(synchronize)

        checkgpu()
    sync_cuda(synchronize)
    stop = time.time()

    print('=> More detail about benchmark PER EPOCH')
    total_time = (stop - start) / parser.num_epochs
    loss_time = loss_time / parser.num_epochs
    force_time = force_time / parser.num_epochs
    opti_time = timers['optimizer.step'] / parser.num_epochs
    forward_time = timers['forward'] / parser.num_epochs
    aev_time = timers['total'] / parser.num_epochs
    print_timer('   Total AEV', aev_time)
    print_timer('   Forward', forward_time)
    print_timer('   Backward', loss_time)
    print_timer('   Force', force_time)
    print_timer('   Optimizer', opti_time)
    print_timer(
        '   Others', total_time - loss_time - aev_time - forward_time -
        opti_time - force_time)
    print_timer('   Epoch time', total_time)