Esempio n. 1
0
    def __init__(self, opt):
        super(FM, self).__init__()
        self.use_cuda = opt.get('use_cuda')
        self.latent_dim = opt['latent_dim']
        self.field_dims = opt['field_dims']

        self.feature_num = sum(self.field_dims)
        self.embedding = PEPEmbedding(opt)
        self.linear = FeaturesLinear(self.field_dims)  # linear part
        self.fm = FactorizationMachine(reduce_sum=True)
        print("BackBone Embedding Parameters: ", self.feature_num * self.latent_dim)
Esempio n. 2
0
    def __init__(self, field_dims, embed_dim):

        super().__init__()

        self.embedding = FeaturesEmbedding(field_dims, embed_dim)
        self.linear = FeaturesLinear(field_dims)
        self.fm = FactorizationMachine(reduce_sum=True)
Esempio n. 3
0
 def __init__(self,
              field_dims,
              embed_dim,
              atten_embed_dim,
              num_heads,
              num_layers,
              mlp_dims,
              dropouts,
              has_residual=True):
     super().__init__()
     self.num_fields = len(field_dims)
     self.linear = FeaturesLinear(field_dims)
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.atten_embedding = torch.nn.Linear(embed_dim, atten_embed_dim)
     self.embed_output_dim = len(field_dims) * embed_dim
     self.atten_output_dim = len(field_dims) * atten_embed_dim
     self.has_residual = has_residual
     self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims,
                                     dropouts[1])
     self.self_attns = torch.nn.ModuleList([
         torch.nn.MultiheadAttention(atten_embed_dim,
                                     num_heads,
                                     dropout=dropouts[0])
         for _ in range(num_layers)
     ])
     self.attn_fc = torch.nn.Linear(self.atten_output_dim, 1)
     if self.has_residual:
         self.V_res_embedding = torch.nn.Linear(embed_dim, atten_embed_dim)
Esempio n. 4
0
 def __init__(self, field_dims, embed_dim, mlp_dims, dropout):
     super().__init__()
     self.linear = FeaturesLinear(field_dims)
     self.fm = FactorizationMachine(reduce_sum=True)
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.embed_output_dim = len(field_dims) * embed_dim
     self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout)
Esempio n. 5
0
 def __init__(self, field_dims, embed_dim, mlp_dims, dropouts):
     super().__init__()
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.linear = FeaturesLinear(field_dims)
     self.fm = torch.nn.Sequential(FactorizationMachine(reduce_sum=False),
                                   torch.nn.BatchNorm1d(embed_dim),
                                   torch.nn.Dropout(dropouts[0]))
     self.mlp = MultiLayerPerceptron(embed_dim, mlp_dims, dropouts[1])
Esempio n. 6
0
 def __init__(self, field_dims, embed_dim, num_layers, mlp_dims, dropout):
     super().__init__()
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.linear = FeaturesLinear(field_dims)
     self.embed_output_dim = len(field_dims) * embed_dim
     self.cn = CrossNetwork(self.embed_output_dim, num_layers)
     self.cn_output = torch.nn.Linear(self.embed_output_dim, 1)
     self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout)
Esempio n. 7
0
    def __init__(self, field_dims, embed_dim, mlp_dims, dropout):

        super().__init__()
        self.linear = FeaturesLinear(field_dims)
        self.embedding = FeaturesEmbedding(field_dims, embed_dim)

        self.embed_output_dim = len(field_dims) * embed_dim
        self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims,
                                        dropout)
Esempio n. 8
0
    def __init__(self, field_dims, embed_dim, attn_size, dropouts):

        super().__init__()

        self.num_fields = len(field_dims)
        self.embedding = FeaturesEmbedding(field_dims, embed_dim)

        self.linear = FeaturesLinear(field_dims)
        self.afm = AttentionalFactorizationMachine(embed_dim, attn_size, dropouts)
Esempio n. 9
0
 def __init__(self, field_dims, embed_dim, LNN_dim, mlp_dims, dropouts):
     super().__init__()
     self.num_fields = len(field_dims)
     self.linear = FeaturesLinear(field_dims)  # Linear
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)  # Embedding
     self.LNN_dim = LNN_dim
     self.LNN_output_dim = self.LNN_dim * embed_dim
     self.LNN = LNN(self.num_fields, embed_dim, LNN_dim)
     self.mlp = MultiLayerPerceptron(self.LNN_output_dim, mlp_dims,
                                     dropouts[0])
Esempio n. 10
0
 def __init__(self, field_dims, embed_dim, mlp_dims, dropouts):
     super().__init__()
     self.linear = FeaturesLinear(field_dims)
     self.ffm = FieldAwareFactorizationMachine(field_dims, embed_dim)
     self.ffm_output_dim = len(field_dims) * (len(field_dims) -
                                              1) // 2 * embed_dim
     self.bn = torch.nn.BatchNorm1d(self.ffm_output_dim)
     self.dropout = torch.nn.Dropout(dropouts[0])
     self.mlp = MultiLayerPerceptron(self.ffm_output_dim, mlp_dims,
                                     dropouts[1])
Esempio n. 11
0
 def __init__(self, field_dims, embed_dim, mlp_dims, dropout, method='inner'):
     super().__init__()
     num_fields = len(field_dims)
     if method == 'inner':
         self.pn = InnerProductNetwork()
     elif method == 'outer':
         self.pn = OuterProductNetwork(num_fields, embed_dim)
     else:
         raise ValueError('unknown product type: ' + method)
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.linear = FeaturesLinear(field_dims, embed_dim)
     self.embed_output_dim = num_fields * embed_dim
     self.mlp = MultiLayerPerceptron(num_fields * (num_fields - 1) // 2 + self.embed_output_dim, mlp_dims, dropout)
Esempio n. 12
0
 def __init__(self, field_dims, obsItem_dims, obsUser_dims, embed_dim, obs,
              embed):
     super().__init__()
     # print(field_dims, embed_dim)
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     # print(field_dims[0:1], obsItem_dims)
     # input()
     # if obs:
     self.obsItem_coeff = FeaturesEmbedding(field_dims[0:1], obsItem_dims)
     self.obsUser_coeff = FeaturesEmbedding(field_dims[1:2], obsUser_dims)
     self.linear = FeaturesLinear(field_dims, bias=False)
     self.fm = FactorizationMachine(reduce_sum=True)
     self.obs = obs
     self.embed = embed
     assert obs or embed, "One of obs or embed must be true\n"
Esempio n. 13
0
 def __init__(self,
              field_dims,
              embed_dim,
              mlp_dims,
              dropout,
              cross_layer_sizes,
              split_half=True):
     super().__init__()
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.embed_output_dim = len(field_dims) * embed_dim
     self.cin = CompressedInteractionNetwork(len(field_dims),
                                             cross_layer_sizes, split_half)
     self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims,
                                     dropout)
     self.linear = FeaturesLinear(field_dims)
Esempio n. 14
0
 def __init__(self, field_dims, order, embed_dim):
     super().__init__()
     if order < 1:
         raise ValueError(f'invalid order: {order}')
     self.order = order
     self.embed_dim = embed_dim
     self.linear = FeaturesLinear(field_dims)
     if order >= 2:
         self.embedding = FeaturesEmbedding(field_dims,
                                            embed_dim * (order - 1))
         self.fm = FactorizationMachine(reduce_sum=True)
     if order >= 3:
         self.kernels = torch.nn.ModuleList([
             AnovaKernel(order=i, reduce_sum=True)
             for i in range(3, order + 1)
         ])
 def __init__(self,
              field_dims,
              embed_dim,
              mlp_dims,
              dropout,
              training_method='dfa'):
     super().__init__()
     self.linear = FeaturesLinear(field_dims)
     self.fm = FactorizationMachine(reduce_sum=True)
     self.embedding = FeaturesEmbedding(
         field_dims, embed_dim)  # Trained through FM. OK: no weights in FM.
     self.embed_output_dim = len(field_dims) * embed_dim
     self.mlp = DFAMultiLayerPerceptron(self.embed_output_dim,
                                        mlp_dims,
                                        dropout,
                                        training_method=training_method)
Esempio n. 16
0
 def __init__(self, field_dims, embed_dim, num_heads, num_layers, mlp_dims,
              dropouts):
     super().__init__()
     self.embed_dim = embed_dim
     self.num_fields = len(field_dims)
     self.linear = FeaturesLinear(field_dims)
     self.embedding = FeaturesEmbedding(field_dims, embed_dim)
     self.embed_output_dim = len(field_dims) * embed_dim
     # self.res = torch.nn.Linear(self.embed_output_dim,self.embed_output_dim)
     self.mlp = MultiLayerPerceptron(self.embed_output_dim + 399, mlp_dims,
                                     dropouts[1])
     self.self_attns = torch.nn.ModuleList([
         torch.nn.MultiheadAttention(embed_dim,
                                     num_heads,
                                     dropout=dropouts[0])
         for _ in range(num_layers)
     ])
     self.attn_fc = torch.nn.Linear(self.embed_output_dim, 1)
    def __init__(self,
                 field_dims,
                 embed_dim,
                 atten_embed_dim,
                 num_heads,
                 num_layers,
                 mlp_dims,
                 dropouts,
                 has_residual=True,
                 training_method='dfa'):
        super().__init__()
        self.num_fields = len(field_dims)
        self.linear = FeaturesLinear(field_dims)
        self.embedding = FeaturesEmbedding(field_dims, embed_dim)
        self.dfa_embedding = DFALayer()
        self.atten_embedding = torch.nn.Linear(embed_dim, atten_embed_dim)
        self.dfa_atten_embedding = DFALayer()
        self.embed_output_dim = len(field_dims) * embed_dim
        self.atten_output_dim = len(field_dims) * atten_embed_dim
        self.has_residual = has_residual
        self.mlp = DFAMultiLayerPerceptron(self.embed_output_dim,
                                           mlp_dims,
                                           dropouts[1],
                                           dfa_output=False)
        self.self_attns = torch.nn.ModuleList([
            torch.nn.MultiheadAttention(atten_embed_dim,
                                        num_heads,
                                        dropout=dropouts[0])
            for _ in range(num_layers)
        ])
        self.dfa_self_attns = [DFALayer() for _ in range(num_layers - 1)]

        self.attn_fc = torch.nn.Linear(self.atten_output_dim, 1)

        if self.has_residual:
            self.V_res_embedding = torch.nn.Linear(embed_dim, atten_embed_dim)

        self.dfa_cross = DFALayer()
        self.dfa = DFA(dfa_layers=[
            self.dfa_atten_embedding, *self.dfa_self_attns, self.dfa_cross,
            *self.mlp.dfa_layers, self.dfa_embedding
        ],
                       feedback_points_handling=FeedbackPointsHandling.LAST,
                       no_training=training_method != 'dfa')
Esempio n. 18
0
class FM(torch.nn.Module):
    """Factorization Machines"""

    def __init__(self, opt):
        super(FM, self).__init__()
        self.use_cuda = opt.get('use_cuda')
        self.latent_dim = opt['latent_dim']
        self.field_dims = opt['field_dims']

        self.feature_num = sum(self.field_dims)
        self.embedding = PEPEmbedding(opt)
        self.linear = FeaturesLinear(self.field_dims)  # linear part
        self.fm = FactorizationMachine(reduce_sum=True)
        print("BackBone Embedding Parameters: ", self.feature_num * self.latent_dim)

    def forward(self, x):
        linear_score = self.linear.forward(x)
        xv = self.embedding(x)
        fm_score = self.fm.forward(xv)
        score = linear_score + fm_score
        return score.squeeze(1)

    def l2_penalty(self, x, lamb):
        xv = self.embedding(x)
        xv_sq = xv.pow(2)
        xv_penalty = xv_sq * lamb
        xv_penalty = xv_penalty.sum()
        return xv_penalty

    def calc_sparsity(self):
        base = self.feature_num * self.latent_dim
        non_zero_values = torch.nonzero(self.embedding.sparse_v).size(0)
        percentage = 1 - (non_zero_values / base)
        return percentage, non_zero_values

    def get_threshold(self):
        return self.embedding.g(self.embedding.s)

    def get_embedding(self):
        return self.embedding.sparse_v.detach().cpu().numpy()
Esempio n. 19
0
class LR(torch.nn.Module):
    def __init__(self, opt):
        super(LR, self).__init__()
        self.use_cuda = opt.get('use_cuda')
        self.field_dims = opt['field_dims']
        self.linear = FeaturesLinear(self.field_dims)  # linear part

    def forward(self, x):
        """Compute Score"""
        score = self.linear.forward(x)
        return score.squeeze(1)

    def l2_penalty(self, x, lamb):
        return 0

    def calc_sparsity(self):
        return 0, 0

    def get_threshold(self):
        return 0

    def get_embedding(self):
        return np.zeros(1)
    def __init__(self,
                 field_dims,
                 embed_dim,
                 LNN_dim,
                 mlp_dims,
                 dropouts,
                 training_method='dfa'):
        super().__init__()
        self.num_fields = len(field_dims)
        self.linear = FeaturesLinear(field_dims)  # Linear
        self.embedding = FeaturesEmbedding(field_dims, embed_dim)  # Embedding
        self.dfa_embed = DFALayer()
        self.LNN_dim = LNN_dim
        self.LNN_output_dim = self.LNN_dim * embed_dim
        self.LNN = LNN(self.num_fields, embed_dim, LNN_dim)
        self.dfa_lnn = DFALayer()
        self.mlp = DFAMultiLayerPerceptron(self.LNN_output_dim,
                                           mlp_dims,
                                           dropouts[0],
                                           dfa_output=False)

        self.dfa = DFA(dfa_layers=[self.dfa_lnn, *self.mlp.dfa_layers],
                       feedback_points_handling=FeedbackPointsHandling.LAST,
                       no_training=training_method != 'dfa')
Esempio n. 21
0
 def __init__(self, field_dims, embed_dim):
     super().__init__()
     self.linear = FeaturesLinear(field_dims)
     self.ffm = FieldAwareFactorizationMachine(field_dims, embed_dim)
Esempio n. 22
0
 def __init__(self, field_dims, t, lam):
     super().__init__()
     self.linear = FeaturesLinear(field_dims, t, lam)
Esempio n. 23
0
 def __init__(self, opt):
     super(LR, self).__init__()
     self.use_cuda = opt.get('use_cuda')
     self.field_dims = opt['field_dims']
     self.linear = FeaturesLinear(self.field_dims)  # linear part