def test_noisy_sorted_sampler_sort_key_noise(): data_source = [2, 6, 10] # `sort_key_noise` does not affect values 2, 6, 10 indexes = list( NoisySortedSampler(data_source, get_noise=lambda e: e * 0.25)) for i, j in enumerate(indexes): assert i == j
def test_noisy_sorted_sampler_sort_key_noise(): data_source = [[2], [6], [10]] sort_key = lambda r: r[0] # `sort_key_noise` does not affect values 2, 6, 10 indexes = list(NoisySortedSampler(data_source, sort_key, sort_key_noise=0.25)) for i, j in enumerate(indexes): assert i == j
def test_noisy_sorted_sampler_sorted(): data_source = [[1], [2], [3], [4], [5], [6]] sort_key = lambda r: r[0] indexes = list(NoisySortedSampler(data_source, sort_key, sort_key_noise=0.0)) assert len(indexes) == len(data_source) for i, j in enumerate(indexes): assert i == j
def test_noisy_sorted_sampler(): data_source = [[1], [2], [3], [4], [5], [6]] sort_key = lambda r: r[0] indexes = list(NoisySortedSampler(data_source, sort_key=sort_key)) assert len(indexes) == len(data_source)
def test_noisy_sorted_sampler(): data_source = [1, 2, 3, 4, 5, 6] indexes = list(NoisySortedSampler(data_source)) assert len(indexes) == len(data_source)
def test_pickleable(): data_source = [1, 2, 3, 4, 5, 6] sampler = NoisySortedSampler(data_source) pickle.dumps(sampler)
def test_noisy_sorted_sampler_sorted(): data_source = [1, 2, 3, 4, 5, 6] indexes = list(NoisySortedSampler(data_source, get_noise=lambda e: 0.0)) assert len(indexes) == len(data_source) for i, j in enumerate(indexes): assert i == j
def test_pickleable(): data_source = [[1], [2], [3], [4], [5], [6]] sampler = NoisySortedSampler(data_source) pickle.dumps(sampler)