def test_categorical_accuracy(self): metric = CategoricalAccuracy() predicted = Variable(torch.eye(10)) expected = Variable(torch.LongTensor(list(range(10)))) self.assertEqual(metric(predicted, expected), 100.0) # Set 1st column to ones predicted = Variable(torch.zeros(10, 10)) predicted.data[:, 0] = torch.ones(10) self.assertEqual(metric(predicted, expected), 55.0)
def test_categorical_accuracy(self): metric = CategoricalAccuracy() predicted = torch.eye(10, requires_grad=True) expected = torch.tensor(list(range(10)), dtype=torch.long, requires_grad=True) self.assertEqual(metric(predicted, expected), 100.0) # Set 1st column to ones predicted = torch.zeros(10, 10, requires_grad=True) predicted.data[:, 0] = torch.ones(10) self.assertEqual(metric(predicted, expected), 55.0)
def run(): device = 0 if torch.cuda.is_available() else -1 config = BaseConfig() logging.info('%s_cross_entropy/ckpt.pth.tar' % config.result_dir) if os.path.exists('%s_cross_entropy/ckpt.pth.tar' % config.result_dir): return True logging.info("Triplet Trainer Not Return") create_dirs() tr_data_loader, val_data_loader, te_data_loader = loaders.data_loaders( shuffle=True) model = getattr(models, config.network)(num_classes=len(tr_data_loader.dataset.y)) model criterion = CrossEntropyLoss() if device == 0: model.cuda() criterion.cuda() trainer = ModuleTrainer(model) epochs = config.epochs callbacks = [ EarlyStopping(monitor='val_acc', patience=20), ModelCheckpoint('%s_cross_entropy' % config.result_dir, save_best_only=True, verbose=1), CSVLogger("%s_cross_entropy/logger.csv" % config.result_dir) ] metrics = [CategoricalAccuracy()] trainer.compile(loss=criterion, optimizer='adam', metrics=metrics) trainer.set_callbacks(callbacks) trainer.fit_loader(tr_data_loader, val_loader=val_data_loader, num_epoch=epochs, verbose=2, cuda_device=device) tr_loss = trainer.evaluate_loader(tr_data_loader, cuda_device=device) logging.info(tr_loss) val_loss = trainer.evaluate_loader(val_data_loader, cuda_device=device) logging.info(val_loss) te_loss = trainer.evaluate_loader(te_data_loader, cuda_device=device) logging.info(te_loss) with open('%s_cross_entropy' % config.log_path, "a") as f: f.write('Train %s\nVal:%s\nTest:%s\n' % (str(tr_loss), str(val_loss), te_loss))
def run(): from config import get_config config = get_config() import losses import models from utils.make_dirs import create_dirs from datasets import loaders from torchsample.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger from torchsample.metrics import CategoricalAccuracy from torchsample.modules import ModuleTrainer create_dirs() model = getattr(models, config.network).get_network()( channel=config.network_channel, embedding_size=config.embedding) criterion = getattr(losses, config.loss)() if config.cuda: model.cuda() criterion.cuda() trainer = ModuleTrainer(model) callbacks = [ EarlyStopping(monitor='val_loss', patience=50), ModelCheckpoint(config.result_dir, save_best_only=True, verbose=1), CSVLogger("%s/logger.csv" % config.result_dir) ] metrics = [] if config.loader_name == 'data_loaders': metrics.append(CategoricalAccuracy(top_k=1)) trainer.compile(loss=criterion, optimizer='adam', metrics=metrics) trainer.set_callbacks(callbacks) def get_n_params(model): pp = 0 for p in list(model.parameters()): nn = 1 for s in list(p.size()): nn = nn * s pp += nn return pp with open("models.log", mode="a") as f: f.write("%s\n" % str(config.__dict__)) f.write("%s\n" % str(model)) f.write("%s\n" % str(get_n_params(model))) f.write("\n")
model = Network() trainer = ModuleTrainer(model) callbacks = [ EarlyStopping(patience=10), ReduceLROnPlateau(factor=0.5, patience=5) ] regularizers = [ L1Regularizer(scale=1e-3, module_filter='conv*'), L2Regularizer(scale=1e-5, module_filter='fc*') ] constraints = [UnitNorm(frequency=3, unit='batch', module_filter='fc*')] initializers = [XavierUniform(bias=False, module_filter='fc*')] metrics = [CategoricalAccuracy(top_k=3)] trainer.compile(loss='nll_loss', optimizer='adadelta', regularizers=regularizers, constraints=constraints, initializers=initializers, metrics=metrics) #summary = trainer.summary([1,28,28]) #print(summary) trainer.fit(x_train, y_train, val_data=(x_test, y_test), num_epoch=20,
def run(): from config import get_config config = get_config() print('%s/ckpt.pth.tar' % config.result_dir) if os.path.exists('%s/ckpt.pth.tar' % config.result_dir): return True print("Contrastive Trainer Not Return") import models from utils.make_dirs import create_dirs from datasets import loaders from torchsample.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger from torchsample.metrics import CategoricalAccuracy from torchsample.modules import ModuleTrainer create_dirs() cuda_device = -1 tr_data_loader, val_data_loader, te_data_loader = loaders.online_pair_loaders() model = getattr(models, config.network).get_network()(channel=config.network_channel, embedding_size=config.embedding) from losses.online_cosine import OnlineCosineLoss from datasets.data_utils import AllPositivePairSelector, HardNegativePairSelector margin = 0.5 if args.selector == 'AllPositivePairSelector': criterion = OnlineCosineLoss(margin, AllPositivePairSelector()) elif args.selector == 'HardNegativePairSelector': criterion = OnlineCosineLoss(margin, HardNegativePairSelector()) if config.cuda: model.cuda() criterion.cuda() trainer = ModuleTrainer(model) epochs = config.epochs callbacks = [EarlyStopping(monitor='val_loss', patience=50), ModelCheckpoint(config.result_dir, save_best_only=True, verbose=1), CSVLogger("%s/logger.csv" % config.result_dir)] metrics = [] if config.loader_name == 'data_loaders' and 'Angle' not in config.loss: metrics.append(CategoricalAccuracy(top_k=1)) trainer.compile(loss=criterion, optimizer='adam', metrics=metrics) trainer.set_callbacks(callbacks) if config.cuda: cuda_device = 0 start_time = time.time() trainer.fit_loader(tr_data_loader, val_loader=val_data_loader, num_epoch=epochs, verbose=2, cuda_device=cuda_device) end_time = time.time() with open("%s/app.log" % config.result_dir, mode="a") as f: f.write("%s\n" % str(model)) f.write("%s %s\n" % (config.loss, str(end_time - start_time))) tr_loss = trainer.evaluate_loader(tr_data_loader, cuda_device=cuda_device) print(tr_loss) val_loss = trainer.evaluate_loader(val_data_loader, cuda_device=cuda_device) te_loss = trainer.evaluate_loader(te_data_loader, cuda_device=cuda_device) print(te_loss) with open(config.log_path, "a") as f: f.write('Train %s\nVal:%s\nTest:%s\n' % (str(tr_loss), str(val_loss), te_loss)) tr_data_loader, val_data_loader, te_data_loader = loaders.data_loaders(train=False, val=True) tr_y_pred = trainer.predict_loader(tr_data_loader, cuda_device=cuda_device) save_embeddings(tr_y_pred, '%s/train_embeddings.csv' % config.result_dir) save_labels(tr_data_loader, '%s/train_labels.csv' % config.result_dir) val_y_pred = trainer.predict_loader(val_data_loader, cuda_device=cuda_device) save_embeddings(val_y_pred, '%s/val_embeddings.csv' % config.result_dir) save_labels(val_data_loader, '%s/val_labels.csv' % config.result_dir) te_y_pred = trainer.predict_loader(te_data_loader, cuda_device=cuda_device) save_embeddings(te_y_pred, '%s/test_embeddings.csv' % config.result_dir) save_labels(te_data_loader, '%s/test_labels.csv' % config.result_dir)
suffix = '-' + args.suffix if args.suffix else '' if args.squeeze_excitation: suffix = '-se' + suffix callbacks = [ ReduceLROnPlateau(factor=0.5, patience=5, verbose=1), ModelCheckpoint(directory='checkpoints', filename='fishnet' + suffix + '_{epoch}_{loss}.pth', save_best_only=True, verbose=1) ] initializers = [XavierUniform(bias=False, module_filter='class*')] metrics = [CategoricalAccuracy()] def species_length_loss(input, target): input_species = input[:, :8] input_length = input[:, 8] target_species = target[:, 0].long() target_length = target[:, 1] input_length = input_length * (target_species != 7).float() loss = nn.MSELoss()(input_length, target_length) * 1e-5 + F.nll_loss( input_species, target_species) return loss
def main(args): """Simply redirrcts to the correct function.""" start = default_timer() args.cuda = not args.no_cuda and torch.cuda.is_available() np.random.seed(args.seed) torch.manual_seed(args.seed) print("-------------------------------------------------") if args.verbose > 0: print("Ran on {}".format(time.strftime("%Y-%m-%d %H:%M"))) print() print('Parameters: {}'.format(vars(args))) print() # PREPARES DATA if args.verbose > 1: print('Prepares data ...') train, valid, test = train_valid_test_datasets( args.dataset, validSize=args.validation_size, isHashingTrick=not args.dictionnary, nFeaturesRange=args.num_features_range, ngramRange=args.ngrams_range, seed=args.seed, num_words=args.num_embeding, specificArgs={'dictionnary': ['num_words']}) num_classes = len(train.classes) train = DataLoader(dataset=train, batch_size=args.batch_size, shuffle=not args.no_shuffle) valid = DataLoader(dataset=valid, batch_size=args.batch_size, shuffle=not args.no_shuffle) test = DataLoader(dataset=test, batch_size=args.batch_size, shuffle=not args.no_shuffle) # PREPARES MODEL if args.verbose > 1: print('Prepares model ...') Model = ModelNoDict if args.model == 'embed-softmax' else ModelDict model = Model(args.num_embeding, args.dim, num_classes, isHash=not args.no_hashembed, seed=args.seed, num_buckets=args.num_buckets, append_weight=not args.no_append_weight, aggregation_mode=args.agg_mode, oldAlgorithm=args.old_hashembed) if args.cuda: model.cuda() if args.verbose > 1: model_parameters = filter(lambda p: p.requires_grad, model.parameters()) nParams = sum([np.prod(p.size()) for p in model_parameters]) print('Num parameters in model: {}'.format(nParams)) print("Train on {} samples, validate on {} samples".format( len(train), len(valid))) # COMPILES trainer = ModuleTrainer(model) loss = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) callbacks = [] callbackMetric = "val_loss" if args.val_loss_callback else "val_acc_metric" if args.patience is not None: callbacks.append( EarlyStopping(patience=args.patience, monitor=callbackMetric)) if args.plateau_reduce_lr is not None: callbacks.append( ReduceLROnPlateau(factor=args.plateau_reduce_lr[1], patience=args.plateau_reduce_lr[0], monitor=callbackMetric)) if not args.no_checkpoint: modelDir = os.path.join(parentddir, 'models') filename = "{}.pth.tar".format(args.dataset) callbacks.append( ModelCheckpoint(modelDir, filename=filename, save_best_only=True, max_save=1, monitor=callbackMetric)) metrics = [CategoricalAccuracy()] trainer.compile(loss=loss, optimizer=optimizer, callbacks=callbacks, metrics=metrics) # TRAINS if args.verbose > 1: print('Trains ...') trainer.fit_loader(train, val_loader=valid, num_epoch=args.epochs, verbose=args.verbose, cuda_device=0 if args.cuda else -1) # EVALUATES print() evalTest = trainer.evaluate_loader(test, verbose=args.verbose, cuda_device=0 if args.cuda else -1) evalValid = trainer.evaluate_loader(valid, verbose=args.verbose, cuda_device=0 if args.cuda else -1) print("Last Model. Validation - Loss: {}, Accuracy: {}".format( evalValid['val_loss'], evalValid['val_acc_metric'])) print("Last Model. Test - Loss: {}, Accuracy: {}".format( evalTest['val_loss'], evalTest['val_acc_metric'])) if not args.no_checkpoint: checkpoint = torch.load(os.path.join(modelDir, filename)) model.load_state_dict(checkpoint["state_dict"]) evalTest = trainer.evaluate_loader(test, verbose=args.verbose, cuda_device=0 if args.cuda else -1) evalValid = trainer.evaluate_loader(valid, verbose=args.verbose, cuda_device=0 if args.cuda else -1) print("Best Model. Validation - Loss: {}, Accuracy: {}".format( evalValid['val_loss'], evalValid['val_acc_metric'])) print("Best Model. Test - Loss: {}, Accuracy: {}".format( evalTest['val_loss'], evalTest['val_acc_metric'])) if args.verbose > 1: print('Finished after {:.1f} min.'.format( (default_timer() - start) / 60))
def run(): from config import get_config config = get_config() print('%s/train_embeddings.csv' % config.result_dir) result_dir = config.result_dir print('%s/train_embeddings.csv' % result_dir) if os.path.exists( '%s/train_embeddings.csv' % result_dir) and os.path.exists( '%s/test_embeddings.csv' % result_dir): return True if not os.path.exists(result_dir): os.makedirs(result_dir) print("Saved Module Trainer Not Return") import losses import models from utils.make_dirs import create_dirs from datasets import loaders from torchsample.modules import ModuleTrainer create_dirs() cuda_device = -1 model = getattr(models, config.network).get_network()( channel=config.network_channel, embedding_size=config.embedding) check_point = os.path.join(config.result_dir, "ckpt.pth.tar") if os.path.isfile(check_point): print("=> loading checkpoint '{}'".format(check_point)) checkpoint = torch.load(check_point) model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format( check_point, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(check_point)) criterion = getattr(losses, config.loss)() if config.cuda: model.cuda() criterion.cuda() trainer = ModuleTrainer(model) metrics = [] if config.loader_name == 'data_loaders': metrics.append(CategoricalAccuracy(top_k=1)) trainer.compile(loss=criterion, optimizer='adam', metrics=metrics) if config.cuda: cuda_device = 0 tr_data_loader, val_data_loader, te_data_loader = getattr( loaders, config.loader_name)(train=False, val=True) tr_loss = trainer.evaluate_loader(tr_data_loader, cuda_device=cuda_device) val_loss = trainer.evaluate_loader(val_data_loader, cuda_device=cuda_device) te_loss = trainer.evaluate_loader(te_data_loader, cuda_device=cuda_device) tr_y_pred = trainer.predict_loader(tr_data_loader, cuda_device=cuda_device) save_embeddings(tr_y_pred, '%s/train_embeddings.csv' % result_dir) save_labels(tr_data_loader, '%s/train_labels.csv' % result_dir) val_y_pred = trainer.predict_loader(val_data_loader, cuda_device=cuda_device) save_embeddings(val_y_pred, '%s/val_embeddings.csv' % result_dir) save_labels(val_data_loader, '%s/val_labels.csv' % result_dir) te_y_pred = trainer.predict_loader(te_data_loader, cuda_device=cuda_device) save_embeddings(te_y_pred, '%s/test_embeddings.csv' % result_dir) save_labels(te_data_loader, '%s/test_labels.csv' % result_dir) with open(config.log_path.replace("results", "best_results"), "a") as f: f.write('Best Train %s\nBest Val:%s\nBest Test:%s\n' % (str(tr_loss), str(val_loss), te_loss))