# load CUDA cuda = torch.cuda.is_available() torch.manual_seed(1) if cuda: torch.cuda.manual_seed(1) model = model.cuda() # load trainer trainer = torchsrc.Trainer( cuda=cuda, model=model, optimizer=optim, #train_loader=train_loader, test_loader=test_loader, out=out, outmodel=outmodel, max_epoch=epoch_num, batch_size=batch_size, lmk_num=lmk_num, finetune=finetune, fineepoch=fineepoch) print("==start training==") start_epoch = 0 start_iteration = 1 trainer.epoch = start_epoch trainer.iteration = start_iteration trainer.test_epoch()
# optim = torch.optim.SGD(model.parameters(), lr=learning_curve() _rate, momentum=0.9) # load CUDA cuda = torch.cuda.is_available() torch.manual_seed(1) if cuda: torch.cuda.manual_seed(1) model = model.cuda() # load trainer trainer = torchsrc.Trainer( cuda=cuda, model=model, optimizer=optim, train_loader=train_loader, # val_loader=val_loader, test_loader=test_loader, out=out, max_epoch=epoch_num, batch_size=batch_size, lmk_num=lmk_num, ) print("==start training==") start_epoch = 0 start_iteration = 1 trainer.epoch = start_epoch trainer.iteration = start_iteration trainer.train_epoch()
cuda = torch.cuda.is_available() #cuda = False torch.manual_seed(1) if cuda: torch.cuda.manual_seed(1) model = model.cuda() # load trainer trainer = torchsrc.Trainer( cuda=cuda, model=model, optimizer=optim, train_loader=train_loader, test_loader=test_loader, out=out, max_epoch=epoch_num, batch_size=batch_size, lmk_num=clss_num, dual_network=dual_network, add_calcium_mask=add_calcium_mask, use_siamese=use_siamese, siamese_coeiff=siamese_coeiff, ) print("==start training==") start_iteration = 1 trainer.epoch = start_epoch if ValidateAttention: trainer.epoch = 84 trainer.max_epoch = trainer.epoch + 1
# # load optimizor # optim = torch.optim.SGD(model.parameters(), lr=learning_curve() _rate, momentum=0.9) # load CUDA cuda = torch.cuda.is_available() torch.manual_seed(1) if cuda: torch.cuda.manual_seed(1) model = model.cuda() # load trainer trainer = torchsrc.Trainer( cuda=cuda, model=model, test_loader=test_loader, train_root_dir=train_root_dir, out=out, max_epoch=epoch_num, batch_size=batch_size, lmk_num=lmk_num, ) print("==start testing==") start_epoch = 0 start_iteration = 1 trainer.epoch = start_epoch trainer.iteration = start_iteration trainer.test_epoch()
start_epoch = 0 start_iteration = 1 optim = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999)) trainer = torchsrc.Trainer( cuda=cuda, model=model, optimizer=optim, train_loader=train_loader, test_loader=test_loader, out=out, network_num=network_num, max_epoch=epoch_num, compete=compete, GAN=GAN, batch_size=lmk_batch_size, lmk_num=lmk_num, onlyEval=onlyEval, view=viewName, loss_fun=loss_fun, noLSGAN=noLSGAN, ) print("==start training==") print("==view is == %s " % viewName) start_epoch = 0 start_iteration = 1 trainer.epoch = start_epoch