Esempio n. 1
0
    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                self._test_fn_on_batch(
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        # assert changed type warning
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            self.assertEqual(res1, res2)
Esempio n. 2
0
    def spatial_transform(self, input1, label1):

        vflip = torch.rand(1).item() > 0.5
        hflip = torch.rand(1).item() > 0.5
        deg = torch.LongTensor(1).random_(-20, 20).item()
        scale = torch.FloatTensor(1).uniform_(0.8, 1.2)

        image_list = [input1, label1]
        for i, p in enumerate(image_list):
            dtype = p.dtype

            p_min = p.min()
            p_max = p.max()

            p = (p - p_min) / ((p_max - p_min) + 0.001)

            p = TF.to_pil_image(p.float())
            if vflip:
                p = TF.vflip(p)
            if hflip:
                p = TF.hflip(p)

            p = TF.affine(p,
                          deg,
                          scale=scale,
                          translate=(0, 0),
                          shear=0,
                          resample=BILINEAR)
            p = TF.to_tensor(p).squeeze()

            p = (p * ((p_max - p_min) + 0.001)) + p_min

            if dtype == torch.int64:
                p = p.round()
            p = p.to(dtype=dtype)

            image_list[i] = p.clone()

        input1, mask = image_list

        return input1, mask
Esempio n. 3
0
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
        out_tensor = F.affine(tensor,
                              angle=0,
                              translate=[0, 0],
                              scale=1.0,
                              shear=[0.0, 0.0],
                              resample=0)

        self.assertTrue(tensor.equal(out_tensor),
                        msg="{} vs {}".format(out_tensor[0, :5, :5],
                                              tensor[0, :5, :5]))
        out_tensor = scripted_affine(tensor,
                                     angle=0,
                                     translate=[0, 0],
                                     scale=1.0,
                                     shear=[0.0, 0.0],
                                     resample=0)
        self.assertTrue(tensor.equal(out_tensor),
                        msg="{} vs {}".format(out_tensor[0, :5, :5],
                                              tensor[0, :5, :5]))
def translate_y(
    x: torch.Tensor,
    interval: float,  # [0, interval]
    magnitude: float,
    max_magnitude: int,
    fill: float,
) -> torch.Tensor:

    # Differ from: https://github.com/tensorflow/tpu/blob/3679ca6b979349dde6da7156be2528428b000c7c/models/official/efficientnet/autoaugment.py#L503-L507
    height = x.shape[-2]
    pixels = height * (magnitude / max_magnitude) * interval
    pixels = int(_to_negative(pixels))

    return TF.affine(x,
                     angle=0.,
                     translate=[0, pixels],
                     shear=[0., 0.],
                     scale=1.,
                     fill=[
                         fill,
                     ])
    def __call__(self, img, mask):
        assert img.size == mask.size
        x_offset = int(2 * (random.random() - 0.5) * self.offset[0])
        y_offset = int(2 * (random.random() - 0.5) * self.offset[1])
        
        x_crop_offset = x_offset
        y_crop_offset = y_offset
        if x_offset < 0:
            x_crop_offset = 0
        if y_offset < 0:
            y_crop_offset = 0
        
        cropped_img = tf.crop(img, 
                              y_crop_offset, 
                              x_crop_offset, 
                              img.size[1]-abs(y_offset), 
                              img.size[0]-abs(x_offset))

        if x_offset >= 0 and y_offset >= 0:
            padding_tuple = (0, 0, x_offset, y_offset)

        elif x_offset >= 0 and y_offset < 0:
            padding_tuple = (0, abs(y_offset), x_offset, 0)
        
        elif x_offset < 0 and y_offset >= 0:
            padding_tuple = (abs(x_offset), 0, 0, y_offset)
        
        elif x_offset < 0 and y_offset < 0:
            padding_tuple = (abs(x_offset), abs(y_offset), 0, 0)
        
        return (
              tf.pad(cropped_img, 
                     padding_tuple, 
                     padding_mode='reflect'),
              tf.affine(mask,
                        translate=(-x_offset, -y_offset),
                        scale=1.0,
                        angle=0.0,
                        shear=0.0,
                        fillcolor=250))
Esempio n. 6
0
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
                )
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                    )
                )
Esempio n. 7
0
def zoom_blur_p(dataroot, saveroot, frameNum):
    for index, folder in enumerate(sorted(os.listdir(dataroot))):
        for img_loc in os.listdir(dataroot + folder):
            img = trn.Resize(256)(PILImage.open(dataroot + folder + '/' +
                                                img_loc)).convert('RGB')

            z = trn.CenterCrop(224)(img)
            avg = trn.ToTensor()(z)
            for i in range(1, frameNum):
                z = trn.CenterCrop(224)(trn_F.affine(
                    img,
                    angle=0,
                    translate=(0, 0),
                    scale=1 + 0.004 * i,
                    shear=0,
                    resample=PILImage.BILINEAR))
                avg += trn.ToTensor()(z)
                save_dir = saveroot + '/zoom_blur/' + folder + '/' + img_loc + '/'
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                trn.ToPILImage()(avg / (i + 1)).save(
                    os.path.join(save_dir, 'img' + str(i) + '.png'))
 def __call__(self, img: Image.Image, label=None):
     """
         img (PIL Image): Image to be rotated.
     Returns:
         PIL Image: Rotated image.
     """
     if label is None:
         return super(RandomAffineWithLabel, self).__call__(img)
     rot_angle, translate, scale, shear = \
         self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
     img = TF.affine(img,
                     rot_angle,
                     translate,
                     scale,
                     shear,
                     resample=self.resample,
                     fillcolor=self.fillcolor)
     center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
     affine_transform_matrix = _get_affine_matrix(center, rot_angle,
                                                  translate, scale, shear)
     label = _affine_transform_label(label, affine_transform_matrix)
     return img, label
    def affine_img_mask(self):
        """ 
            This step is aimed to avoid cropping image with 
            black regions
        """
        """  Generate a mask with the same size of original image """
        mask = np.ones((self.row, self.col))
        pil_mask = Image.fromarray(mask)
        """ Do the same transformations"""
        if self.all_param[0] == 'True':
            mask_hflip = TF.hflip(pil_mask)
        else:
            mask_hflip = pil_mask

        mask_affine = TF.affine(mask_hflip, self.all_param[1],
                                self.all_param[3], self.all_param[2],
                                self.all_param[4])

        np_mask = np.uint8(mask_affine)
        """ Select random rectangular regions without black parts """
        while (1):
            occ_i = int(random.uniform(0, 0.8) * self.row)
            occ_j = int(random.uniform(0, 0.8) * self.col)
            occ_h = int(random.uniform(0.2, 0.5) * self.row)
            occ_w = int(random.uniform(0.2, 0.5) * self.col)

            MaxRow = min(self.row - 1, occ_i + occ_h)
            MaxCol = min(self.col - 1, occ_j + occ_w)

            mask_crop = np_mask[occ_i:MaxRow, occ_j:MaxCol]
            mask_crop_pixel = (MaxRow - occ_i) * (MaxCol - occ_j)

            mask_crop_sum = sum(sum(mask_crop))

            if (mask_crop_sum == mask_crop_pixel):
                break

        return occ_i, occ_j, MaxRow, MaxCol
Esempio n. 10
0
    def __call__(self, img: Image.Image, label=None):
        """
            img (PIL Image): Image to be rotated.
        Returns:
            PIL Image: Rotated image.
        """
        if label is None:
            return super(RandomAffineWithLabel, self).__call__(img)
        rot_angle, translate, scale, shear = \
            self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)

        # TODO: git issue shearing, otherwise throws .any()/.all() error
        old_shear = shear.copy()
        assert shear[1] == 0
        shear = shear[0]

        # from utils import pil_imshow
        # pil_imshow(img, label.numpy()[:, 0:4], multiple_rectangles=True, window_name="original", wait_key=False)

        img = TF.affine(img,
                        rot_angle,
                        translate,
                        scale,
                        shear,
                        resample=self.resample,
                        fillcolor=self.fillcolor)

        center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)

        affine_transform_matrix = _get_affine_matrix(center, rot_angle,
                                                     translate, scale, shear)

        label = _affine_transform_label(label, affine_transform_matrix)

        # pil_imshow(img, label.numpy()[:, 0:4], multiple_rectangles=True, window_name="skewed", wait_key=True)

        return img, label
Esempio n. 11
0
    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
            (0, [0, 0], 1.0, [35.0, ], (2.0, )),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
        ]
        for r in [NEAREST, ]:
            for a, t, s, sh, f in test_configs:
                f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f_pil)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                        )
                    )
Esempio n. 12
0
def translate_image(input, translate, show=False):
    img = input[0]
    plt.imshow(img)
    data = input[1]
    rect_coords = data[1:]
    width, height = img.size

    new_rect = np.zeros(4)
    print rect_coords[0], rect_coords[0] + float(translate[0]) / width
    new_rect[0] = max(0., rect_coords[0] + float(translate[0]) / width)
    new_rect[1] = min(1., rect_coords[1] + float(translate[0]) / width)
    new_rect[2] = max(0., rect_coords[2] + float(translate[1]) / height)
    new_rect[3] = min(1., rect_coords[3] + float(translate[1]) / height)
    print new_rect
    img = TF.affine(img, 0, translate, 1, 0)

    if show:
        draw = ImageDraw.Draw(img)
        draw.rectangle(((new_rect[0] * width, new_rect[2] * height),
                        (new_rect[1] * width, new_rect[3] * height)))
        plt.imshow(img)
        plt.show()

    return (img, np.insert(new_rect, 0, data[0]))
Esempio n. 13
0
    def _transform(
        self, x: "torch.Tensor", y: Optional["torch.Tensor"], **kwargs
    ) -> Tuple["torch.Tensor", Optional["torch.Tensor"]]:
        """
        Apply random affine transforms to an image.
        :param x: Input samples.
        :param y: Label of the samples `x`.
        :return: Transformed samples and labels.
        """
        import torch
        import torchvision.transforms.functional as F

        img_size = x.shape[:2]

        angle = float(
            torch.empty(1)
            .uniform_(float(self.degree_range[0]), float(self.degree_range[1]))
            .item()
        )

        max_dx = float(self.translate[0] * img_size[1])
        max_dy = float(self.translate[1] * img_size[0])
        tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
        ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
        translations = (tx, ty)

        scale = float(torch.empty(1).uniform_(self.scale[0], self.scale[1]).item())

        # x needs to have channel first
        x = x.permute(2, 0, 1)
        x = F.affine(
            img=x, angle=angle, translate=translations, scale=scale, shear=(0.0, 0.0)
        )
        x = x.permute(1, 2, 0)

        return torch.clamp(x, min=self.clip_values[0], max=self.clip_values[1]), y
Esempio n. 14
0
    def __call__(self, *in_images, fillcolor=None):
        # Check that all input images share the same size which also
        #  match the declared one
        assert np.all([i.shape[:2] == self.size for i in in_images])

        fill = fillcolor
        if fillcolor is None:
            fill = self.fillcolor

        output = []
        for image in in_images:
            image = Image.fromarray(image)
            x = F.affine(image,
                         *self.ret,
                         resample=self.resample,
                         fillcolor=fill)
            output.append(np.asarray(x))

        if len(output) == 1:
            output = output[0]
        else:
            output = np.stack(output, axis=0)

        return output
Esempio n. 15
0
        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
            s_rad = math.radians(sh)
            # 1) Check transformation matrix:
            c_matrix = np.array([[1.0, 0.0, cnt[0]], [0.0, 1.0, cnt[1]], [0.0, 0.0, 1.0]])
            c_inv_matrix = np.linalg.inv(c_matrix)
            t_matrix = np.array([[1.0, 0.0, t[0]],
                                 [0.0, 1.0, t[1]],
                                 [0.0, 0.0, 1.0]])
            r_matrix = np.array([[s * math.cos(a_rad), -s * math.sin(a_rad + s_rad), 0.0],
                                 [s * math.sin(a_rad), s * math.cos(a_rad + s_rad), 0.0],
                                 [0.0, 0.0, 1.0]])
            true_matrix = np.dot(t_matrix, np.dot(c_matrix, np.dot(r_matrix, c_inv_matrix)))
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
            assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
            # 2) Perform inverse mapping:
            true_result = np.zeros((200, 200, 3), dtype=np.uint8)
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
            assert result.size == pil_img.size
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
            assert n_diff_pixels < 3, \
                "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +\
                "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0]))
Esempio n. 16
0
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [[10, 12], (-12, -13)]
        for t in test_configs:

            out_pil_img = F.affine(pil_img,
                                   angle=0,
                                   translate=t,
                                   scale=1.0,
                                   shear=[0.0, 0.0],
                                   resample=0)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor,
                                angle=0,
                                translate=t,
                                scale=1.0,
                                shear=[0.0, 0.0],
                                resample=0)

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                self.compareTensorToPIL(out_tensor, out_pil_img)
    def transform_image(self,
                        image,
                        resize_param,
                        crop_param=False,
                        method=Image.BICUBIC,
                        angle=None,
                        normalize=True,
                        toTensor=True):
        if crop_param:
            image = F.crop(image, crop_param['top'], crop_param['left'],
                           crop_param['height'], crop_param['width'])
        if angle is not None:
            image = F.affine(image,
                             angle=angle,
                             translate=(0, 0),
                             scale=1,
                             shear=0)

        image = F.resize(image, resize_param, interpolation=method)
        if toTensor:
            image = F.to_tensor(image)
        if normalize:
            image = F.normalize(image, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        return image
Esempio n. 18
0
    def __call__(self, samples):
        """samples: pil images"""

        transformations = transforms.Compose([
            MaxSizeResizer(224),
            SquarePad(),
            transforms.ToPILImage(),
        ])
        samples = [transformations(s) for s in samples]

        if self.augment:
            rotation, translation, scale, shear = transforms.RandomAffine.get_params(
                (-30, 30), (0.1, 0.1), (0.8, 1.2), None, samples[0].size)
            brightness = np.random.uniform(0.5, 1.5)
            contrast = np.random.uniform(0.7, 1.3)
            hue = np.random.uniform(-0.2, 0.2)
            flip = np.random.uniform(0, 1) > 0.5

            for i, s in enumerate(samples):
                s = F.affine(s, rotation, translation, scale, shear)
                s = F.adjust_brightness(s, brightness)
                s = F.adjust_contrast(s, contrast)
                s = F.adjust_hue(s, hue)
                if flip > 0.5:
                    s = F.hflip(s)
                samples[i] = s
            # plt.imshow(np.array(samples[0]))
            # plt.show()

        transformations = transforms.Compose([
            transforms.Grayscale(),
            transforms.ToTensor(),
            transforms.Normalize(mean=0.456, std=0.224),
        ])
        samples = torch.cat([transformations(s) for s in samples], 0)
        return samples
Esempio n. 19
0
 def transform_image(self,
                     image,
                     resize_param,
                     method=Image.BICUBIC,
                     affine=None,
                     normalize=True,
                     toTensor=True,
                     fillWhiteColor=False):
     image = F.resize(image, resize_param, interpolation=method)
     if affine is not None:
         angle, translate, scale = affine['angle'], affine['shift'], affine[
             'scale']
         fillcolor = None if not fillWhiteColor else (255, 255, 255)
         image = F.affine(image,
                          angle=angle,
                          translate=translate,
                          scale=scale,
                          shear=0,
                          fillcolor=fillcolor)
     if toTensor:
         image = F.to_tensor(image)
     if normalize:
         image = F.normalize(image, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
     return image
Esempio n. 20
0
    def test_warnings(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        # assert deprecation warning and non-BC
        with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        with pytest.warns(UserWarning, match=r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))
    def __call__(self, img, target=None, mask=None):
        """
            img (PIL Image): Image to be rotated.
            target (PIL Image): (optional) Target to be rotated
	    mask (PIL Image): (optional) Mask to be rotated

        Returns:
            PIL Image: Rotated image(s).
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        if target is not None and mask is None:
            return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor), \
                   F.affine(target, *ret, resample=self.resample_tg, fillcolor=self.fillcolor)
                   # resample = False is by default nearest, appropriate for targets
        if target is not None and mask is not None:
            return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor), \
                   F.affine(target, *ret, resample=self.resample_tg, fillcolor=self.fillcolor), \
                   F.affine(mask, *ret, resample=self.resample_mask, fillcolor=self.fillcolor)
                   # resample = False is by default nearest, appropriate for targets
        
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)
Esempio n. 22
0
    def test_affine(self):
        input_img = np.zeros((200, 200, 3), dtype=np.uint8)
        pts = []
        cnt = [100, 100]
        for pt in [(80, 80), (100, 80), (100, 100)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
                    pts.append((pt[0] + i, pt[1] + j))
        pts = list(set(pts))

        with self.assertRaises(TypeError):
            F.affine(input_img, 10)

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
            s_rad = math.radians(sh)
            # 1) Check transformation matrix:
            c_matrix = np.array([[1.0, 0.0, cnt[0]], [0.0, 1.0, cnt[1]], [0.0, 0.0, 1.0]])
            c_inv_matrix = np.linalg.inv(c_matrix)
            t_matrix = np.array([[1.0, 0.0, t[0]],
                                 [0.0, 1.0, t[1]],
                                 [0.0, 0.0, 1.0]])
            r_matrix = np.array([[s * math.cos(a_rad), -s * math.sin(a_rad + s_rad), 0.0],
                                 [s * math.sin(a_rad), s * math.cos(a_rad + s_rad), 0.0],
                                 [0.0, 0.0, 1.0]])
            true_matrix = np.dot(t_matrix, np.dot(c_matrix, np.dot(r_matrix, c_inv_matrix)))
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
            assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
            # 2) Perform inverse mapping:
            true_result = np.zeros((200, 200, 3), dtype=np.uint8)
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
            assert result.size == pil_img.size
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
            assert n_diff_pixels < 3, \
                "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +\
                "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0]))

        # Test rotation
        a = 45
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=0.0)

        # Test translation
        t = [10, 15]
        _test_transformation(a=0.0, t=t, s=1.0, sh=0.0)

        # Test scale
        s = 1.2
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=0.0)

        # Test shear
        sh = 45.0
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
                for s in [0.75, 0.98, 1.0, 1.1, 1.2]:
                    for sh in range(-15, 15, 5):
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=sh)
Esempio n. 23
0
    def test_affine(self):
        input_img = np.zeros((200, 200, 3), dtype=np.uint8)
        pts = []
        cnt = [100, 100]
        for pt in [(80, 80), (100, 80), (100, 100)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
                    pts.append((pt[0] + i, pt[1] + j))
        pts = list(set(pts))

        with self.assertRaises(TypeError):
            F.affine(input_img, 10)

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
            s_rad = math.radians(sh)
            # 1) Check transformation matrix:
            c_matrix = np.array([[1.0, 0.0, cnt[0]], [0.0, 1.0, cnt[1]],
                                 [0.0, 0.0, 1.0]])
            c_inv_matrix = np.linalg.inv(c_matrix)
            t_matrix = np.array([[1.0, 0.0, t[0]], [0.0, 1.0, t[1]],
                                 [0.0, 0.0, 1.0]])
            r_matrix = np.array(
                [[s * math.cos(a_rad), -s * math.sin(a_rad + s_rad), 0.0],
                 [s * math.sin(a_rad), s * math.cos(a_rad + s_rad), 0.0],
                 [0.0, 0.0, 1.0]])
            true_matrix = np.dot(
                t_matrix, np.dot(c_matrix, np.dot(r_matrix, c_inv_matrix)))
            result_matrix = _to_3x3_inv(
                F._get_inverse_affine_matrix(center=cnt,
                                             angle=a,
                                             translate=t,
                                             scale=s,
                                             shear=sh))
            assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
            # 2) Perform inverse mapping:
            true_result = np.zeros((200, 200, 3), dtype=np.uint8)
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[
                            1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
            assert result.size == pil_img.size
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
            assert n_diff_pixels < 3, \
                "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +\
                "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0]))

        # Test rotation
        a = 45
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=0.0)

        # Test translation
        t = [10, 15]
        _test_transformation(a=0.0, t=t, s=1.0, sh=0.0)

        # Test scale
        s = 1.2
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=0.0)

        # Test shear
        sh = 45.0
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
                for s in [0.75, 0.98, 1.0, 1.1, 1.2]:
                    for sh in range(-15, 15, 5):
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=sh)
Esempio n. 24
0
 def torchvision(self, img):
     return torchvision.affine(img, angle=45, translate=(50, 50), scale=2, shear=0, resample=Image.BILINEAR)
Esempio n. 25
0
 def torchvision_transform(self, img):
     return torchvision.affine(img, angle=45, translate=(50, 50), scale=2, shear=0, resample=Image.BILINEAR)
Esempio n. 26
0
 def sample_augment(self, input_data, params):
     input_data = tvF.affine(input_data,
                             *params,
                             resample=self.resample,
                             fillcolor=self.fillcolor)
     return input_data
Esempio n. 27
0
    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        for tensor, pil_img in [
                self._create_data(26, 26),
                self._create_data(32, 26)
        ]:

            # 1) identity map
            out_tensor = F.affine(tensor,
                                  angle=0,
                                  translate=[0, 0],
                                  scale=1.0,
                                  shear=[0.0, 0.0],
                                  resample=0)
            self.assertTrue(tensor.equal(out_tensor),
                            msg="{} vs {}".format(out_tensor[0, :5, :5],
                                                  tensor[0, :5, :5]))
            out_tensor = scripted_affine(tensor,
                                         angle=0,
                                         translate=[0, 0],
                                         scale=1.0,
                                         shear=[0.0, 0.0],
                                         resample=0)
            self.assertTrue(tensor.equal(out_tensor),
                            msg="{} vs {}".format(out_tensor[0, :5, :5],
                                                  tensor[0, :5, :5]))

            if pil_img.size[0] == pil_img.size[1]:
                # 2) Test rotation
                test_configs = [
                    (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
                    (45, None),
                    (30, None),
                    (-30, None),
                    (-45, None),
                    (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
                    (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
                ]
                for a, true_tensor in test_configs:
                    for fn in [F.affine, scripted_affine]:
                        out_tensor = fn(tensor,
                                        angle=a,
                                        translate=[0, 0],
                                        scale=1.0,
                                        shear=[0.0, 0.0],
                                        resample=0)
                        if true_tensor is not None:
                            self.assertTrue(true_tensor.equal(out_tensor),
                                            msg="{}\n{} vs \n{}".format(
                                                a, out_tensor[0, :5, :5],
                                                true_tensor[0, :5, :5]))
                        else:
                            true_tensor = out_tensor

                        out_pil_img = F.affine(pil_img,
                                               angle=a,
                                               translate=[0, 0],
                                               scale=1.0,
                                               shear=[0.0, 0.0],
                                               resample=0)
                        out_pil_tensor = torch.from_numpy(
                            np.array(out_pil_img).transpose((2, 0, 1)))

                        num_diff_pixels = (true_tensor !=
                                           out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / true_tensor.shape[
                            -1] / true_tensor.shape[-2]
                        # Tolerance : less than 6% of different pixels
                        self.assertLess(ratio_diff_pixels,
                                        0.06,
                                        msg="{}\n{} vs \n{}".format(
                                            ratio_diff_pixels,
                                            true_tensor[0, :7, :7],
                                            out_pil_tensor[0, :7, :7]))
            else:
                test_configs = [90, 45, 15, -30, -60, -120]
                for a in test_configs:
                    for fn in [F.affine, scripted_affine]:
                        out_tensor = fn(tensor,
                                        angle=a,
                                        translate=[0, 0],
                                        scale=1.0,
                                        shear=[0.0, 0.0],
                                        resample=0)
                        out_pil_img = F.affine(pil_img,
                                               angle=a,
                                               translate=[0, 0],
                                               scale=1.0,
                                               shear=[0.0, 0.0],
                                               resample=0)
                        out_pil_tensor = torch.from_numpy(
                            np.array(out_pil_img).transpose((2, 0, 1)))

                        num_diff_pixels = (out_tensor !=
                                           out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[
                            -1] / out_tensor.shape[-2]
                        # Tolerance : less than 3% of different pixels
                        self.assertLess(ratio_diff_pixels,
                                        0.03,
                                        msg="{}: {}\n{} vs \n{}".format(
                                            a, ratio_diff_pixels,
                                            out_tensor[0, :7, :7],
                                            out_pil_tensor[0, :7, :7]))

            # 3) Test translation
            test_configs = [[10, 12], (-12, -13)]
            for t in test_configs:
                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor,
                                    angle=0,
                                    translate=t,
                                    scale=1.0,
                                    shear=[0.0, 0.0],
                                    resample=0)
                    out_pil_img = F.affine(pil_img,
                                           angle=0,
                                           translate=t,
                                           scale=1.0,
                                           shear=[0.0, 0.0],
                                           resample=0)
                    self.compareTensorToPIL(out_tensor, out_pil_img)

            # 3) Test rotation + translation + scale + share
            test_configs = [
                (45, [5, 6], 1.0, [0.0, 0.0]),
                (33, (5, -4), 1.0, [0.0, 0.0]),
                (45, [-5, 4], 1.2, [0.0, 0.0]),
                (33, (-4, -8), 2.0, [0.0, 0.0]),
                (85, (10, -10), 0.7, [0.0, 0.0]),
                (0, [0, 0], 1.0, [
                    35.0,
                ]),
                (-25, [0, 0], 1.2, [0.0, 15.0]),
                (-45, [-10, 0], 0.7, [2.0, 5.0]),
                (-45, [-10, -10], 1.2, [4.0, 5.0]),
                (-90, [0, 0], 1.0, [0.0, 0.0]),
            ]
            for r in [
                    0,
            ]:
                for a, t, s, sh in test_configs:
                    out_pil_img = F.affine(pil_img,
                                           angle=a,
                                           translate=t,
                                           scale=s,
                                           shear=sh,
                                           resample=r)
                    out_pil_tensor = torch.from_numpy(
                        np.array(out_pil_img).transpose((2, 0, 1)))

                    for fn in [F.affine, scripted_affine]:
                        out_tensor = fn(tensor,
                                        angle=a,
                                        translate=t,
                                        scale=s,
                                        shear=sh,
                                        resample=r)
                        num_diff_pixels = (out_tensor !=
                                           out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[
                            -1] / out_tensor.shape[-2]
                        # Tolerance : less than 5% of different pixels
                        self.assertLess(ratio_diff_pixels,
                                        0.05,
                                        msg="{}: {}\n{} vs \n{}".format(
                                            (r, a, t, s, sh),
                                            ratio_diff_pixels,
                                            out_tensor[0, :7, :7],
                                            out_pil_tensor[0, :7, :7]))
Esempio n. 28
0
def affine(im, angle, translate, scale, shear):
    assert isPIL(im), f"Got type {type(im)}."
    assert -180 <= angle <= 180, f"Invalid angle: {angle}"
    return TFF.affine(im, angle, translate, scale, shear)
Esempio n. 29
0
 def affine(self, x, params, resample=Image.BILINEAR):
     return TF.affine(x, *params, resample=resample, fillcolor=0)
Esempio n. 30
0
def imageTransform(img, transformVals):
    if transformVals[0] == 1:
        img = TF.hflip(img)
    img = TF.affine(img, transformVals[1], transformVals[2], transformVals[3],0)
    return img
    def forward(self, img: Tensor):
        """
            img (PIL Image or Tensor): Image to be transformed.

        Returns:
            PIL Image or Tensor: AutoAugmented image.
        """
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            elif fill is not None:
                fill = [float(f) for f in fill]

        transform_id, probs, signs = self.get_params(len(self.transforms))

        for i, (op_name, p, magnitude_id) in enumerate(self.transforms[transform_id]):
            if probs[i] <= p:
                magnitudes, signed = self._get_op_meta(op_name)
                magnitude = float(magnitudes[magnitude_id].item()) \
                    if magnitudes is not None and magnitude_id is not None else 0.0
                if signed is not None and signed and signs[i] == 0:
                    magnitude *= -1.0
                    
                if op_name == "Pairing":
                    img = 
                if op_name == "ShearX":
                    img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[math.degrees(magnitude), 0.0],
                                   interpolation=self.interpolation, fill=fill)
                elif op_name == "ShearY":
                    img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[0.0, math.degrees(magnitude)],
                                   interpolation=self.interpolation, fill=fill)
                elif op_name == "TranslateX":
                    img = F.affine(img, angle=0.0, translate=[int(F._get_image_size(img)[0] * magnitude), 0], scale=1.0,
                                   interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill)
                elif op_name == "TranslateY":
                    img = F.affine(img, angle=0.0, translate=[0, int(F._get_image_size(img)[1] * magnitude)], scale=1.0,
                                   interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill)
                elif op_name == "Rotate":
                    img = F.rotate(
                        img, magnitude, interpolation=self.interpolation, fill=fill)
                elif op_name == "Flip":
                    img = F.hflip(img)
                elif op_name == "Brightness":
                    img = F.adjust_brightness(img, 1.0 + magnitude)
                elif op_name == "Color":
                    img = F.adjust_saturation(img, 1.0 + magnitude)
                elif op_name == "Contrast":
                    img = F.adjust_contrast(img, 1.0 + magnitude)
                elif op_name == "Sharpness":
                    img = F.adjust_sharpness(img, 1.0 + magnitude)
                elif op_name == "Posterize":
                    img = F.posterize(img, int(magnitude))
                elif op_name == "Solarize":
                    img = F.solarize(img, magnitude)
                elif op_name == "AutoContrast":
                    img = F.autocontrast(img)
                elif op_name == "Equalize":
                    img = F.equalize(img)
                elif op_name == "Invert":
                    img = F.invert(img)
                else:
                    raise ValueError(
                        "The provided operator {} is not recognized.".format(op_name))

        return img
Esempio n. 32
0
def affine(pil, angle, translate, scale, shear):
    assert isPIL(pil), f"Got type {type(pil)}."
    return TFF.affine(pil, angle, translate, scale, shear)