def AlbumentationTrainTransform(self): tf = tc.Compose([ ta.HorizontalFlip(), ta.Cutout(num_holes=1, max_h_size=16, max_w_size=16), tp.ToTensor(dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))) ]) return lambda img: tf(image=np.array(img))["image"]
def AlbumentationTestTransform(self): tf = tc.Compose([ tp.ToTensor( dict(mean=(0.4802, 0.4481, 0.3975), std=(0.2302, 0.2265, 0.2262))) ]) return lambda img: tf(image=np.array(img))["image"]
def AlbumentationTrainTransform(self): tf = tc.Compose([ta.PadIfNeeded(4, 4, always_apply=True), ta.RandomCrop(height=32, width=32, always_apply=True), ta.Cutout(num_holes = 1, max_h_size=8, max_w_size=8, always_apply=True), ta.HorizontalFlip(), tp.ToTensor(dict (mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))) ]) return lambda img: tf(image = np.array(img))["image"]
def AlbumentationTrainTransform(self): tf = tc.Compose([ta.HorizontalFlip(p=0.5), ta.Rotate(limit=(-20, 20)), # ta.VerticalFlip(p=0.5), # ta.Cutout(num_holes=3, max_h_size=8, max_w_size=8, p=0.5), # ta.Blur(), # ta.ChannelShuffle(), # ta.InvertImg(), ta.RandomCrop(height=30, width=30, p=5.0), ta.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), tp.ToTensor() ]) return lambda img: tf(image = np.array(img))["image"]
night_augmentation=None, output_types=['pose', 'label']) tf = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor() ]) L = len(test) print('Dataset has {:d} entries'.format(L)) for i in tqdm.tqdm(range(len(test)), total=L, desc='All there?', leave=False): test[i] imgs = torch.stack( [tf(test[i][0]) for i in range(L // 16 - 7, L // 16 + 7)] #+ [tf(test[i][0]) for i in range(2*(L//3)-7, 2*(L//3)+7)] ) grid = utils.make_grid(imgs, 7) plt.imshow(grid.permute(1, 2, 0)) plt.show() elif test_name == 'synthetic': test = AachenDayNight('../data/deepslam_data/AachenDayNight/', True, 224, use_synthetic=True, use_stylization=16, output_types=['pose']) print('Length synthetic dataset: {:d}'.format(len(test))) """ loader = AachenDayNight('../data/deepslam_data/AachenDayNight/', True, verbose=True)
def AlbumentationTestTransform(self): tf = tc.Compose([ta.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), tp.ToTensor() # tp.ToTensor(dict(mean=(0.4914, 0.4822, 0.4465), std=(0.247, 0.2435, 0.2616))) ]) return lambda img: tf(image = np.array(img))["image"]