def update_marketdata_from_crawler(): m_type_dict = scdw.get_type_dict('A', is_name_index=True) def file_processing(csv_file_name): trading_df = pd.read_csv(os.path.join(CRAWLING_TARGET_PATH, csv_file_name), delimiter=',', encoding='CP949', names=COLUMN_NAMES, skiprows=[0]) trading_df = trading_df.fillna(0) trading_df['date'] = parse(str(re.findall('\d{8}', csv_file_name)[0])).date() trading_df['m_type'] = trading_df['m_type']\ .apply(lambda m_type: m_type_dict[str(m_type)]) trading_df = trading_df.drop(['m_dept'], axis=1) smdw.insert(trading_df) shutil.move(os.path.join(CRAWLING_TARGET_PATH, csv_file_name), os.path.join(CRAWLING_BACKUP_PATH, csv_file_name)) se = StartEndLogging() try: for file_name in tqdm(sorted(os.listdir(CRAWLING_TARGET_PATH))): file_processing(file_name) se.mid(file_name) except Exception as e: log.error(e) sys.exit() se.end()
def lstm_test(): se = StartEndLogging() modeling_target_qs = scw.gets_modeling_target() log.info(len(modeling_target_qs)) cnt_skip_trend, cnt_skip_accuracy = 0, 0 for modeling_company in modeling_target_qs[:15]: model = LstmTraining(modeling_company.com_code, kwargs) is_skip = model.modeling() se.mid(f'{modeling_company.com_code}') if is_skip['trend']: cnt_skip_trend += 1 if is_skip['accuracy']: cnt_skip_accuracy += 1 log.info( f'modeling total count: {len(modeling_target_qs)}, ' f'trend skip: {cnt_skip_trend}, accuracy skip: {cnt_skip_accuracy}') se.end()
def today_modeling(): se = StartEndLogging() modeling_target_qs = scw.gets_modeling_target() modeling_size = len(modeling_target_qs) cnt_processing = 0 cnt_skip_trend, cnt_skip_accuracy = 0, 0 for modeling_company in modeling_target_qs: model = LstmTraining(modeling_company.com_code, LSTM_KWARGS) is_skip = model.modeling2() cnt_processing += 1 se.mid(f'{modeling_company.com_code}, {cnt_processing}/{modeling_size}') if is_skip['trend']: cnt_skip_trend += 1 if is_skip['accuracy']: cnt_skip_accuracy += 1 log.info(f'modeling total count: {len(modeling_target_qs)}, ' f'trend skip: {cnt_skip_trend}, accuracy skip: {cnt_skip_accuracy}') se.end()