Esempio n. 1
0
    def create_map(self,
                   projection: Union[str, Projection] = "EuroPP()") -> None:
        if isinstance(projection, str):
            if not projection.endswith(")"):
                projection = projection + "()"
            projection = eval(projection)

        self.projection = projection
        self.trajectories.clear()

        with plt.style.context("traffic"):

            self.fig.clear()
            self.ax = self.fig.add_subplot(111, projection=self.projection)
            projection_name = projection.__class__.__name__.split(".")[-1]

            self.ax.add_feature(
                countries(scale="10m" if projection_name not in
                          ["Mercator", "Orthographic"] else "110m"))
            if projection_name in ["Lambert93", "GaussKruger", "Amersfoort"]:
                # Hardcoded projection list?! :o/
                self.ax.add_feature(rivers())

            self.fig.set_tight_layout(True)
            self.ax.background_patch.set_visible(False)
            self.ax.outline_patch.set_visible(False)
            self.ax.format_coord = lambda x, y: ""
            self.ax.set_global()

        self.draw()
Esempio n. 2
0
def plot_trajs(t, sector, proj=Lambert93()):
    n_clusters_ = int(1 + t.data.cluster.max())

    #  -- dealing with colours --
    color_cycle = cycle(
        ["#377eb8", "#ff7f00", "#4daf4a", "#f781bf"] +
        ["#a65628", "#984ea3", "#999999", "#e41a1c", "#dede00"])

    colors = list(islice(color_cycle, n_clusters_))
    colors.append("#aaaaaa")  # color for outliers, if any

    # -- dealing with the grid --

    nb_cols = 5
    nb_lines = (1 + n_clusters_) // nb_cols + ((
        (1 + n_clusters_) % nb_cols) > 0)

    def ax_iter(axes):
        if len(axes.shape) == 1:
            yield from axes
        if len(axes.shape) == 2:
            for ax_ in axes:
                yield from ax_

    with plt.style.context("traffic"):
        fig, ax = plt.subplots(
            nb_lines,
            nb_cols,
            subplot_kw=dict(projection=proj),
            figsize=(15, 25),
        )

        for cluster, ax_ in tqdm(
                zip(range(t.data.cluster.min(), n_clusters_), ax_iter(ax))):
            ax_.add_feature(countries())
            ax_.add_feature(rivers())

            tc = t.query(f"cluster == {cluster}")
            len_tc = len(tc)
            tc = tc[sample(tc.flight_ids, min(50, len(tc)))]
            tc.plot(ax_, color=colors[cluster])
            vr = tc.data.vertical_rate.mean()
            alt = tc.data.altitude.mean() // 100
            evolution = "=" if abs(vr) < 200 else "↗" if vr > 0 else "↘"
            ax_.set_title(f"{alt:.0f}FL{evolution}\nlen cluster:{len_tc}")

            if sector is not None:
                ax_.set_extent(sector)
                sector.plot(ax_, lw=2)
Esempio n. 3
0
def plot_trajs(tc, sector):
    n_clusters_ = int(1 + tc.data.cluster.max())

    #  -- dealing with colours --
    color_cycle = cycle(
        ["#377eb8", "#ff7f00", "#4daf4a", "#f781bf"] +
        ["#a65628", "#984ea3", "#999999", "#e41a1c", "#dede00"])

    colors = list(islice(color_cycle, n_clusters_))
    colors.append("#aaaaaa")  # color for outliers, if any

    # -- dealing with the grid --

    nb_cols = 3
    nb_lines = (1 + n_clusters_) // nb_cols + ((
        (1 + n_clusters_) % nb_cols) > 0)

    def ax_iter(axes):
        if len(axes.shape) == 1:
            yield from axes
        if len(axes.shape) == 2:
            for ax_ in axes:
                yield from ax_

    with plt.style.context("traffic"):
        fig, ax = plt.subplots(nb_lines,
                               nb_cols,
                               subplot_kw=dict(projection=Lambert93()))

        for cluster, ax_ in zip(range(-1, n_clusters_), ax_iter(ax)):
            ax_.add_feature(countries())
            ax_.add_feature(rivers())

            tc.query(f"cluster == {cluster}").plot(ax_, color=colors[cluster])

            ax_.set_extent(sector)

            sector.plot(ax_, lw=2)
Esempio n. 4
0
def plot_data(flights: Traffic, airport: Airport, output: Path,
              arrival: int=1):

    fig = plt.figure(figsize=(10, 10))
    ax = plt.axes(projection=UTM((airport.lon + 180) // 6,
                                 southern_hemisphere=(airport.lat > 0)))

    ax.add_feature(countries(scale='50m'))
    ax.add_feature(rivers(scale='50m'))
    ax.add_feature(lakes(scale='50m'))
    ax.gridlines()
    ax.set_extent(airport.extent)

    try:
        from cartotools.osm import request, tags
        request(f'{airport.icao} airport', **tags.airport).plot(ax)
    except Exception:
        pass

    fd = flights.data

    fd = fd[fd.longitude > airport.lon - 1]
    fd = fd[fd.longitude < airport.lon + 1]
    fd = fd[fd.latitude > airport.lat - 1]
    fd = fd[fd.latitude < airport.lat + 1]
    fd = fd.groupby('callsign').filter(
        lambda f: arrival * f.vertical_rate[:-100].mean() < -10)

    for flight in Traffic(fd):
        flight.plot(ax)

    fig.suptitle(f"{airport.name}")
    fig.set_tight_layout(True)

    logging.info(f"Image saved as {output}")
    fig.savefig(output.as_posix())
Esempio n. 5
0
def clusters_plot2d(
    sector,
    t,
    nb_samples,
    projection,
    scaler=None,
    plot_trajs=False,
    plot_clust=None,
):
    with plt.style.context("traffic"):
        fig, ax = plt.subplots(subplot_kw=dict(projection=projection))
        ax.add_feature(countries())
        ax.add_feature(rivers())
        ax.set_extent(
            tuple(x - 0.5 + (0 if i % 2 == 0 else 1)
                  for i, x in enumerate(sector.extent)))
        sector.plot(ax, lw=5)
        clust_ids = sorted(t.data.cluster.unique())
        if plot_clust is None:
            plot_clust = clust_ids
        for cid in plot_clust:
            tc = t.query(f"cluster=={cid}")
            if plot_trajs:
                for flight in tc:
                    lat = list(flight.data["latitude"])
                    lon = list(flight.data["longitude"])
                    if cid != -1:
                        ax.plot(
                            lon,
                            lat,
                            color=C[cid],
                            transform=PlateCarree(),
                            lw=1,
                            alpha=0.5,
                        )
                    else:
                        ax.plot(
                            lon,
                            lat,
                            color="grey",
                            transform=PlateCarree(),
                            lw=0.5,
                            alpha=0.5,
                        )
            if cid != -1:
                cent = tc.centroid(nb_samples,
                                   projection=projection,
                                   transformer=scaler).data
                lat = list(cent["latitude"])
                lon = list(cent["longitude"])
                ax.plot(lon, lat, color=C[cid], transform=PlateCarree(), lw=5)
                ax.arrow(
                    lon[-5],
                    lat[-5],
                    lon[-1] - lon[-5],
                    lat[-1] - lat[-5],
                    color=C[cid],
                    transform=PlateCarree(),
                    lw=3,
                    head_width=0.1,
                    head_length=0.1,
                )
Esempio n. 6
0
import matplotlib.pyplot as plt

from traffic.drawing import countries, rivers, lakes, ocean, TransverseMercator
from traffic.data import eurofirs

fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(111, projection=TransverseMercator(10, 45))

ax.set_extent((-20, 45, 30, 70))

ax.add_feature(countries(scale="50m"))
ax.add_feature(rivers(scale="50m"))
ax.add_feature(lakes(scale="50m"))
ax.add_feature(ocean(scale="50m"))

for key, fir in eurofirs.items():
    fir.plot(ax, edgecolor="#3a3aaa", lw=2, alpha=.5)
    if key not in ["ENOB", "LPPO", "GCCC"]:
        fir.annotate(
            ax,
            s=key,
            ha="center",
            color="#3a3aaa",
            fontname="Ubuntu",
            fontsize=13,
        )

fig.savefig("eurofirs.png", bbox_inches="tight", pad_inches=0, dpi=200)