def __init__(self,
                 min_light_time=1,
                 max_light_time=3,
                 in_file='./example.in'):
        self.traffic = Traffic(in_file=in_file)
        self.scheduler = []

        num_streets = len(self.traffic.streets)

        self._lower_bounds = num_streets * [None]
        self._upper_bounds = num_streets * [None]
        self._variable = num_streets * [True]

        self._discrete_values = num_streets * [[
            x for x in range(min_light_time, max_light_time + 1)
        ]]

        # define all input parameters
        self._maximize = True  # do we maximize or minimize?
        self._max_imp = 50000  # maximum number of improvisations
        self._hms = 100  # harmony memory size
        self._hmcr = 0.75  # harmony memory considering rate
        self._par = 0.5  # pitch adjusting rate
        self._mpap = 0.25  # maximum pitch adjustment proportion (new parameter defined in pitch_adjustment()) - used for continuous variables only
        self._mpai = 10  # maximum pitch adjustment index (also defined in pitch_adjustment()) - used for discrete variables only
Esempio n. 2
0
 def test_get_response(self):
     traffic = Traffic("foo", "bar")
     traffic.duration = "10 thousand years"
     expected = {
         "travel_time": "10 thousand years",
         "start_location": "foo",
         "destination": "bar",
     }
     actual = traffic.get_response()
Esempio n. 3
0
    def test_get_dynamo_data_with_bad_response_returns_none(self):
        traffic = Traffic("foo", "bar")
        test_table = TestTable()
        test_table.query = MagicMock(return_value="blargh")
        traffic.dynamo.Table = MagicMock(return_value=test_table)

        actual = traffic.get_dynamo_data()

        self.assertEqual(actual, None)
Esempio n. 4
0
    def test_google_maps_api_failure(self):
        traffic = Traffic("blah, blah", "ha, ha")
        traffic.gmaps.distance_matrix = MagicMock(
            side_effect=Exception("stuff's broke"))
        traffic.make_google_api_call()
        self.assertEqual(traffic.duration, "Unavailable")

        actual = traffic.time_in_hours_and_minutes(seconds)
        expected = {"hours": hours, "minutes": minutes}

        self.assertEqual(actual, expected)
Esempio n. 5
0
    def test_convert_seconds_to_hours_and_minutes(self):
        seconds = 55555
        hours = "15"
        minutes = "25"

        traffic = Traffic("blah", "blah")

        actual = traffic.time_in_hours_and_minutes(seconds)
        expected = {"hours": hours, "minutes": minutes}

        self.assertEqual(actual, expected)
Esempio n. 6
0
    def test_set_dynamo_data(self):
        traffic = Traffic("foo", "bar")
        test_data = {"test": "data"}
        test_table = TestTable()
        test_table.put_item = MagicMock()
        traffic.dynamo.Table = MagicMock(return_value=test_table)

        traffic.set_dynamo_data(test_data)

        traffic.dynamo.Table.assert_called_with("TrafficData")
        test_table.put_item.assert_called_with(Item=test_data)
Esempio n. 7
0
    def test_make_dynamo_data(self):
        traffic = Traffic("foo", "bar")
        traffic.duration = {"hours": "1", "minutes": "30"}
        time.time = MagicMock(return_value=123456789)

        actual = traffic.make_dynamo_data()
        expected = {
            "identifier": "bar---foo",
            "hours": "1",
            "minutes": "30",
            "time": 123456789
        }
        self.assertEqual(actual, expected)
Esempio n. 8
0
    def test_get_dynamo_data_returns_first_item(self):
        traffic = Traffic("foo", "bar")
        test_table = TestTable()
        test_table.query = MagicMock(
            return_value={"Items": ["Item 1", "Item 2"]})
        traffic.dynamo.Table = MagicMock(return_value=test_table)

        actual = traffic.get_dynamo_data()

        test_table.query.assert_called_with(
            KeyConditionExpression=Key("identifier").eq("bar---foo"),
            ScanIndexForward=False,
            Limit=1)
        self.assertEqual(actual, "Item 1")
Esempio n. 9
0
    def test_google_maps_api(self):
        traffic = Traffic("blah, blah", "foo, foo")
        origin = ["foo, foo"]
        destination = ["blah, blah"]
        traffic.gmaps.distance_matrix = MagicMock(return_value={
            "rows": [{
                "elements": [{
                    "duration": {
                        "value": 55555
                    }
                }]
            }]
        })

        traffic.make_google_api_call()
        traffic.gmaps.distance_matrix.assert_called_with(origin, destination)
        self.assertEqual(traffic.duration, {"hours": "15", "minutes": "25"})
Esempio n. 10
0
    def test_get_traffic_calls_gmaps_if_needed(self):
        traffic = Traffic("foo", "bar")
        traffic.get_dynamo_data = MagicMock(return_value=None)
        traffic.make_google_api_call = MagicMock()

        traffic.get_traffic_data()

        traffic.make_google_api_call.assert_called()
Esempio n. 11
0
    def test_google_maps_api_failure(self):
        traffic = Traffic("blah, blah", "ha, ha")
        traffic.gmaps.distance_matrix = MagicMock(
            side_effect=Exception("stuff's broke"))
        traffic.set_dynamo_data = MagicMock()
        traffic.get_dynamo_data = MagicMock(return_value=None)

        traffic.make_google_api_call()

        self.assertEqual(traffic.duration, "unavailable")
Esempio n. 12
0
    def test_get_traffic_data_skips_gmaps_if_not_needed(self):
        traffic = Traffic("foo", "bar")
        traffic.get_dynamo_data = MagicMock(return_value={
            "time": time.time(),
            "hours": "1",
            "minutes": "75"
        })
        traffic.make_google_api_call = MagicMock()

        traffic.get_traffic_data()

        traffic.make_google_api_call.assert_not_called()
        self.assertEqual(traffic.duration, {"hours": "1", "minutes": "75"})
from traffic.traffic import Traffic
import random
import pandas as pd
from copy import deepcopy

MIN_LIGHT_TIME = 1
MAX_LIGHT_TIME = 3

t = Traffic('./example.in')

new_green_light_time = [
    random.randint(MIN_LIGHT_TIME, MAX_LIGHT_TIME)
    for _ in range(len(t.street_detail))
]
scheduler = pd.DataFrame({
    'street_name': deepcopy(t.street_detail['name']),
    'green_time': new_green_light_time
})

print("Calculating score of {} ...".format('scheduler'), end='\t')
t.generate_intersection(scheduler=scheduler)

cars = t.simulate()
scheduler_score = t.calculate_simulation_score(cars)
print("receive {} points".format(scheduler_score), end='\t')
from traffic.traffic import Traffic

import vaex


def set_queues_callback(time, queues):
    global street_queues

    street_queues[time] = queues


in_setup_file = './hashcode.in'
in_submission_file = 'submission.hashcode.txt'
out_street_queues_hd5_file = 'street_queues.hashcode.h5'

# in_setup_file='./example.in'
# in_submission_file='submit.example.txt'
# out_street_queues_hd5_file='street_queues.example.h5'

m = Traffic(in_file=in_setup_file)
num_streets = len(m.streets)
callback = set_queues_callback
street_queues = np.zeros((m.end_time, num_streets), dtype=int)
m.read_submission_file(in_file_path=in_submission_file)
m.simulate(progress_bar=True, override_end_time=None, queue_callback=callback)
m_score = m.calculate_simulation_score()
print("Final score: {}".format(m_score))

street_queues_df = vaex.from_pandas(
    pd.DataFrame(street_queues, columns=list(m.streets.keys())))
street_queues_df.export_hdf5(out_street_queues_hd5_file, progress=True)
class HarmonySearch(ObjectiveFunctionInterface):
    """
        This is a toy objective function that contains a mixture of continuous and discrete variables.

        Goal:

            maximize -(x^2 + (y+1)^2) + 4
            The maximum is 4 at (0, -1).

        In this implementation, x is a discrete variable with choices ranging from -100 to 100 in increments of 1.
        y is still a continuous variable.

        Warning: Stochastically solving a linear system is dumb. This is just a toy example.
    """
    def __init__(self,
                 min_light_time=1,
                 max_light_time=3,
                 in_file='./example.in'):
        self.traffic = Traffic(in_file=in_file)
        self.scheduler = []

        num_streets = len(self.traffic.streets)

        self._lower_bounds = num_streets * [None]
        self._upper_bounds = num_streets * [None]
        self._variable = num_streets * [True]

        self._discrete_values = num_streets * [[
            x for x in range(min_light_time, max_light_time + 1)
        ]]

        # define all input parameters
        self._maximize = True  # do we maximize or minimize?
        self._max_imp = 50000  # maximum number of improvisations
        self._hms = 100  # harmony memory size
        self._hmcr = 0.75  # harmony memory considering rate
        self._par = 0.5  # pitch adjusting rate
        self._mpap = 0.25  # maximum pitch adjustment proportion (new parameter defined in pitch_adjustment()) - used for continuous variables only
        self._mpai = 10  # maximum pitch adjustment index (also defined in pitch_adjustment()) - used for discrete variables only

    def generate_sceduler(self, vector):
        self.scheduler = pd.DataFrame({
            'street_name':
            deepcopy(self.traffic.street_detail['name']),
            'green_time':
            vector
        })
        return self.scheduler

    def get_fitness(self, vector):

        self.generate_sceduler(vector)

        self.traffic.generate_intersection(scheduler=self.scheduler)
        cars = self.traffic.simulate()
        scheduler_score = self.traffic.calculate_simulation_score(cars)

        return scheduler_score

    def get_value(self, i, j=None):
        if self.is_discrete(i):
            if j:
                return self._discrete_values[i][j]
            return self._discrete_values[i][random.randint(
                0,
                len(self._discrete_values[i]) - 1)]
        return random.uniform(self._lower_bounds[i], self._upper_bounds[i])

    def get_lower_bound(self, i):
        """
            This won't be called except for continuous variables, so we don't need to worry about returning None.
        """
        return self._lower_bounds[i]

    def get_upper_bound(self, i):
        """
            This won't be called except for continuous variables.
        """
        return self._upper_bounds[i]

    def get_num_discrete_values(self, i):
        if self.is_discrete(i):
            return len(self._discrete_values[i])
        return float('+inf')

    def get_index(self, i, v):
        """
            Because self.discrete_values is in sorted order, we can use binary search.
        """
        return HarmonySearch.binary_search(self._discrete_values[i], v)

    @staticmethod
    def binary_search(a, x):
        """
            Code courtesy Python bisect module: http://docs.python.org/2/library/bisect.html#searching-sorted-lists
        """
        i = bisect_left(a, x)
        if i != len(a) and a[i] == x:
            return i
        raise ValueError

    def is_variable(self, i):
        return self._variable[i]

    def is_discrete(self, i):
        return self._discrete_values[i] is not None

    def get_num_parameters(self):
        return len(self._lower_bounds)

    def use_random_seed(self):
        return hasattr(self, '_random_seed') and self._random_seed

    def get_max_imp(self):
        return self._max_imp

    def get_hmcr(self):
        return self._hmcr

    def get_par(self):
        return self._par

    def get_hms(self):
        return self._hms

    def get_mpai(self):
        return self._mpai

    def get_mpap(self):
        return self._mpap

    def maximize(self):
        return self._maximize
Esempio n. 16
0
from traffic.traffic import Traffic
import numpy as np

m = Traffic(in_file='./hashcode.in')
vector = list(np.random.randint(low=1, high=3, size=len(m.street_detail)))
m.generate_intersection(vector=vector)
m_cars = m.simulate(progress_bar=True)
m_score = m.calculate_simulation_score(m_cars)
print("Final score: {}".format(m_score))