Esempio n. 1
0
def load_model(model_path: Path, data: train.Dataset):
    """Build the graph and load weights from disk."""
    pre_wemb = np.load(str(WVECTORS), mmap_mode='r')
    model = train.build_network(pre_wemb, len(data.concept_ids),
                                len(train.NER_TAGS), data.n_features)
    model.load_weights(str(model_path))
    return model
Esempio n. 2
0
def load_model(path):
    checkpoint = torch.load(path, map_location={'cuda:0': str(device)})

    arch = checkpoint['arch']
    out_features = len(checkpoint['class_to_idx'])
    hidden_layers = checkpoint['hidden_layers']

    # For loading, use the same build_network function used to make saved model's network
    model = build_network(arch, out_features, hidden_layers)
    model.load_state_dict(checkpoint['state_dict'])

    model.class_to_idx = checkpoint['class_to_idx']
    
    return model
Esempio n. 3
0
        state = data_transform(state).unsqueeze(0)  # apply transformations
        state = state.to(device)  # add additional dimension

        with torch.set_grad_enabled(False):  # forward
            outputs = model(state)

        normalized = torch.nn.functional.softmax(outputs, dim=1)

        # translate from net output to env action
        max_action = np.argmax(normalized.cpu().numpy()[0])
        action = available_actions[max_action]
        action[2] = 0.3 if action[2] != 0 else 0  # adjust brake power

        state, _, terminal, _ = env.step(action)  # one step

        if terminal:
            state = env.reset()

        if human_wants_exit:
            env.close()
            return


if __name__ == '__main__':
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    m = build_network()
    m.load_state_dict(torch.load(os.path.join(DATA_DIR, MODEL_FILE)))
    m.eval()
    m = m.to(dev)
    nn_agent_drive(m, dev)
Esempio n. 4
0
 def __init__(self, dumps, emb, **kwargs):
     pre_wemb = np.load(str(emb), mmap_mode='r')
     self.graph = train.build_network(pre_wemb, **kwargs)
     self.weights = list(self._read_weights(dumps))
Esempio n. 5
0
def main():
    # Parse arguments
    # python predict.py "flowers/test/1/image_06764.jpg" "checkpoints/checkpoint.pth" --top_k=6 --category_names="cat_to_name.json" --gpu=True
    parser = argparse.ArgumentParser()
    parser.add_argument('image_path', action="store", type=str)
    parser.add_argument('checkpoint', action="store", type=str)
    parser.add_argument('--top_k', dest="top_k", type=int)
    parser.add_argument('--category_names', dest="category_names", type=str)
    parser.add_argument('--gpu', dest="gpu", default=False, type=bool)
    parser.add_argument('--data_directory',
                        dest="data_directory",
                        default="flowers",
                        type=str)

    args = parser.parse_args()
    #print(args)

    # Setup devivce and load checkpoint
    if args.gpu and torch.cuda.is_available():
        device = torch.device("cuda:0")
        checkpoint = torch.load(args.checkpoint)
    else:
        device = torch.device("cpu")
        # https://gist.github.com/jzbontar/b50f8c9dd22e49ff68c7c91dad63166a
        checkpoint = torch.load(args.checkpoint,
                                map_location=lambda storage, loc: storage)

    # Load te model
    model = train.build_network(checkpoint['hidden_layers'],
                                checkpoint['drop_p'],
                                checkpoint['model_network'])
    model.load_state_dict(checkpoint['state_dict'])
    model.class_to_idx = checkpoint['class_to_idx']

    # Predict categories
    if args.top_k is not None:
        topk = args.top_k
    else:
        topk = 5

    probs, labels = predict(args.image_path, model, args.gpu, topk)

    #  Print most likely image class and it's associated probability
    print("Most likely image class: {}".format(labels[0]))
    print("Probability of this image class: {}%".format(
        round(100 * probs[0], 2)))
    # Print top K classes along with associated probabilities
    if args.top_k is not None:
        index = 0
        print("-" * 20)
        print("Top {} categories and their probabilities:".format(args.top_k))
        for i in np.nditer(probs):
            print("{} : {}%".format(labels[index], round(100 * i, 2)))
            index += 1

    # load a JSON file that maps the class values to other category names
    if args.category_names is not None:
        with open(args.category_names, 'r') as f:
            cat_to_name = json.load(f)
        print("-" * 20)
        print("Top {} flowers categories and their probabilities:".format(
            args.top_k))
        index = 0
        for i in np.nditer(probs):
            print("{} : {}%".format(cat_to_name[labels[index]].title(),
                                    round(100 * i, 2)))
            index += 1
Esempio n. 6
0
import torch

from nn_agent import nn_agent_play
from train import \
    DATA_DIR, \
    MODEL_FILE, \
    build_network, \
    train

if __name__ == '__main__':
    # create cuda device
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # create the network
    model = build_network()

    # if true, try to restore the network from the data file
    restore = False
    if restore:
        model_path = os.path.join(DATA_DIR, MODEL_FILE)
        model.load_state_dict(torch.load(model_path))

    # set the model to evaluation (and not training) mode
    model.eval()

    # transfer to the gpu
    model = model.to(dev)

    # train
    train(model, dev)