def sweep(): wandb.init() # Get hyp dict from sweep agent hyp_dict = vars(wandb.config).get("_items") # Workaround: get necessary opt args opt = parse_opt(known=True) opt.batch_size = hyp_dict.get("batch_size") opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) opt.epochs = hyp_dict.get("epochs") opt.nosave = True opt.data = hyp_dict.get("data") device = select_device(opt.device, batch_size=opt.batch_size) # train train(hyp_dict, opt, device)
def sweep(): wandb.init() # Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb. hyp_dict = vars(wandb.config).get("_items").copy() # Workaround: get necessary opt args opt = parse_opt(known=True) opt.batch_size = hyp_dict.get("batch_size") opt.save_dir = str( increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) opt.epochs = hyp_dict.get("epochs") opt.nosave = True opt.data = hyp_dict.get("data") opt.weights = str(opt.weights) opt.cfg = str(opt.cfg) opt.data = str(opt.data) opt.hyp = str(opt.hyp) opt.project = str(opt.project) device = select_device(opt.device, batch_size=opt.batch_size) # train train(hyp_dict, opt, device, callbacks=Callbacks())