Esempio n. 1
0
def run_experiment(params):
    """Testbed for running model training and evaluation."""
    dataset = inputs.download_data(params.train_path, params.eval_path)
    estimator = model.get_estimator(params)
    trial_id = _get_trial_id()
    model_dir = os.path.join(params.model_dir, trial_id)
    _train_and_evaluate(estimator, dataset, model_dir, params)
def run_training(params):
    """Initializes the estimator and runs train_and_evaluate."""
    estimator = model.get_estimator(params)
    train_input_fn = inputs.get_input_fn(
        params.train_path,
        shuffle=True,
        batch_size=params.batch_size,
        num_epochs=params.num_epochs,
    )
    train_spec = tf.estimator.TrainSpec(
        input_fn=train_input_fn,
        max_steps=params.max_steps,
    )
    eval_input_fn = inputs.get_input_fn(
        params.eval_path,
        shuffle=False,
        batch_size=params.batch_size,
    )
    exporter = tf.estimator.BestExporter(
        "export", inputs.get_serving_input_fn(params.export_format),
        exports_to_keep=1)
    eval_spec = tf.estimator.EvalSpec(
        input_fn=eval_input_fn,
        throttle_secs=1,
        steps=params.eval_steps,
        start_delay_secs=1,
        exporters=[exporter],
    )
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
Esempio n. 3
0
def run_experiment(arguments):
    """Testbed for running model training and evaluation."""

    logging.info('Arguments: %s', arguments)

    # Get estimator
    estimator = model.get_estimator(arguments)

    # Run training and evaluation
    _train_and_evaluate(estimator, arguments.job_dir)
Esempio n. 4
0
def run_experiment(flags):
    """Testbed for running model training and evaluation."""
    # Get data for training and evaluation

    dataset = utils.read_df_from_bigquery(flags.input,
                                          num_samples=flags.num_samples)

    # Get model
    estimator = model.get_estimator(flags)

    # Run training and evaluation
    _train_and_evaluate(estimator, dataset, flags.job_dir)
Esempio n. 5
0
def run_experiment(flags):
  """Testbed for running model training and evaluation."""
  # Get data for training and evaluation

  dataset = utils.read_df_from_bigquery(
      flags.input, num_samples=flags.num_samples)

  # Get model
  estimator = model.get_estimator(flags)

  # Run training and evaluation
  _train_and_evaluate(estimator, dataset, flags.job_dir)
Esempio n. 6
0
def run_experiment(arguments):
    """Testbed for running model training and evaluation."""
    # Get data for training and evaluation

    logging.info('Arguments: %s', arguments)

    dataset = utils.read_df_from_gcs(arguments.input)

    # Get estimator
    estimator = model.get_estimator(arguments)

    # Run training and evaluation
    _train_and_evaluate(estimator, dataset, arguments.job_dir)
Esempio n. 7
0
def run_experiment(hparams):
    """Train and evaluate tf.estimator model"""
    print(hparams)

    train_spec = tf.estimator.TrainSpec(
        input_fn=input_utils._get_train_input_fn(hparams.train_file,
                                                 hparams.batch_size,
                                                 hparams.num_epochs,
                                                 tf.estimator.ModeKeys.TRAIN),
        max_steps=hparams.train_steps)
    # final_exporter = tf.estimator.FinalExporter('final_exporter', input_utils.serving_input_fn)
    eval_spec = tf.estimator.EvalSpec(input_fn=input_utils._get_train_input_fn(
        hparams.eval_file, hparams.batch_size, hparams.num_epochs,
        tf.estimator.ModeKeys.EVAL))
    # exporters=[final_exporter])
    # Checkpoints to save
    run_config = tf.estimator.RunConfig(model_dir=hparams.job_dir,
                                        save_checkpoints_steps=100,
                                        keep_checkpoint_max=200)
    estimator = model.get_estimator(hparams)
    return tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)