Esempio n. 1
0
def main(options):
    seed = options.seed
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)

    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    frames, targets = dataset.make_dataset()

    trainer.train_net(frames, targets)
Esempio n. 2
0
def main(options):
    seed = options.seed
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)

    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    d = options.dim
    n = options.num_samples

    x, y = dataset.make_dataset(d, n)

    trainer.train_net(x, y)
Esempio n. 3
0
def visualize_data():
    data_dict = dataset.get_data()
    build_data = BuildDataset()
    train_ds, test_ds = build_data.get_dataset(data_dict['train_data'],
                                               data_dict['test_data'])

    train_iter, test_iter = build_data.create_vocalb(train_ds, test_ds)

    st.subheader(
        'How the data looks after creating vocalb from the dataset . . ')
    st.text(vars(test_ds[20]))
    print(vars(test_ds[20]))

    # create the model
    model = LSTMNet(config.vocalb_size,
                    config.embedding_dim,
                    input_dim=len(build_data.TEXT.vocab),
                    hidden_dim=config.hidden_dim,
                    output_dim=config.out_dim,
                    n_layers=config.n_layers,
                    dropout=config.dropout,
                    pad=build_data.TEXT.vocab.stoi[build_data.TEXT.pad_token])

    # Load pre-trained embedding weights
    pretrained_embeddings = build_data.TEXT.vocab.vectors

    print(pretrained_embeddings.shape)

    # model.embedding_layer.weight.data.copy_(pretrained_embeddings)

    #initialize to zeros
    model.embedding_layer.weight.data[model.pad_idx] = torch.zeros(
        config.embedding_dim)

    model_trained = trainer.train_net(model, train_iter, test_iter, epochs=1)
Esempio n. 4
0
def train():
    print("Train mode")
    print("run_prefix", RUN_PREFIX)
    config = Config()
    loss_mode = args.lossmode
    model = train_net(WEIGHTS_FLD, LOG_FLD, PRED_FLD, config, loss_mode)

    print("calc_jacc for {}: N examples:: {}".format(dir, config.AMT_VAL))
    x_val, y_val = get_patches_dir(config.VAL_DIR,
                                   config,
                                   shuffleOn=False,
                                   amt=config.AMT_VAL)
    score, trs = calc_jacc_img_msk(model,
                                   x_val,
                                   y_val,
                                   batch_size=4,
                                   n_classes=config.NUM_CLASSES)
    print("score, trs", score, trs)
batch_size =args["batch_size"]

test_loader = DataLoader(test_dataset, 
                          batch_size=batch_size,
                          shuffle=False, 
                          num_workers=0)


if args['loss'] == "MSE":
    criterion = nn.MSELoss()
else:
    criterion = nn.SmoothL1Loss()
net.to(device)

optimizer =torch.optim.Adam(net.parameters(), lr=1e-5, weight_decay=5e-4) #define optimizer
val_net(0, 0, net, criterion, optimizer, device, test_loader, sub, div)
n_epochs = args["epoch"]
min_loss = float('inf')
for epoch in range(n_epochs):
    print("=====Training=======")
    train_net(epoch, n_epochs, net, criterion, optimizer, device, train_loader, sub, div)
    print("=====Validation=======")
    loss = val_net(epoch, n_epochs, net, criterion, optimizer, device, test_loader, sub, div)
    if loss < min_loss:
        print("=====Saving=======")
        model_dir = './saved_models/'
        name =  args["dataset"]+'_'+model_name+'_'+str(loss)+'.pt'
        min_loss = loss
        # after training, save your model parameters in the dir 'saved_models'
        torch.save(net.state_dict(), model_dir+name)
Esempio n. 6
0
#ImageFolderでデータセットを読み込み、分割してデータローダーを作る
from torchvision.datasets import ImageFolder
train_loader, test_loader = load_dataset.GetDataLoader_withSplit(ImageFolder('./food-101/images',tf), 0.2, batch_size)
print("データーローダー準備完了")

#モデル構築
from modeldef import VGG19custom
net = VGG19custom()

print(net)      #ネットワーク構造の表示

#自作ヘルパー関数のロード
#評価処理と訓練処理
from trainer import eval_net, train_net

#データをすべて転送する
import torch
#device_select = 'cpu'		#デバッグ用
device_select = 'cuda' if torch.cuda.is_available() else 'cpu'		#CUDAが使えるなら使う
n_epoch = 5
net.to(device_select)

#訓練実施
train_net(net, train_loader, test_loader, n_iter=n_epoch, device=device_select)
print("モデル訓練完了")

#モデルをシリアライズ
import modelio
modelio.SaveModelWeights(net,"model.pth")
modelio.SaveOnnxModel(net, "model.onnx", (3,224,224))
print("モデル出力完了")
Esempio n. 7
0
def main(options):
    #seed = options.seed
    #seeds = [4, 44, 3, 33, 333]
    seeds = [44, 3, 33, 333]
    size = options.size
    num_classes = options.num_classes
    width = options.width
    trials = options.trials
    run_idx = options.run_idx

    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    #depths = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    #depths = [10, 12, 14, 16, 18, 20]
    #depths = [22, 24, 26, 28, 30]

    if run_idx == 0:
        depths = [1, 2, 3]
    elif run_idx == 1:
        depths = [4, 5, 6]
    elif run_idx == 2:
        depths = [7, 8, 9]
    elif run_idx == 3:
        depths = [10, 12, 15]

    #train_loader, test_loader, classes = dataset.make_dataset(size, num_classes)

    all_classes = [0, 1, 2, 3, 4, 7, 9, 14, 16, 17]
    '''
    0 kit_fox
    1 English_setter
    2 Siberian_husky
    3 Australian_terrier
    4 English_springer
    7 Egyptian_cat
    9 Persian_cat
    14 malamute
    16 Great_Dane
    17 Walker_hound
    '''
    classes = all_classes[:num_classes]
    train_loader, transform = get_imagenet_trainloader(classes)
    test_loader = get_imagenet_testloader(classes,
                                          transform,
                                          batch_size=50 * num_classes)
    classes_arg = range(
        num_classes
    )  # the imagenet test loader already renumbers the classes, so we don't need to do this in the train script.

    file = open(
        "imagenet32_log_extratrials/size{}_width{}_{}classes_{}.txt".format(
            size, width, num_classes, run_idx), "w")
    file.write('depth trial ' + str(seeds) + '\n')
    for trial in range(trials):

        seed = seeds[trial]
        torch.manual_seed(seed)
        np.random.seed(seed)
        torch.cuda.manual_seed(seed)

        for depth in depths:

            results = trainer.train_net(train_loader, test_loader, depth, size,
                                        classes_arg, width, options.model)
            file.write(
                str(depth) + " " + str(trial) + " " + str(results) + "\n")

    file.close()
Esempio n. 8
0
def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu
    args.multigpu = False
    if args.distributed:
        args.multigpu = True
        args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
        args.batch_size = int(args.batch_size / ngpus_per_node)
        args.workers = int(
            (args.num_workers + ngpus_per_node - 1) / ngpus_per_node)
        print("==> gpu:", args.gpu, ", rank:", args.rank, ", batch_size:",
              args.batch_size, ", workers:", args.workers)
        torch.cuda.set_device(args.gpu)
    elif args.gpu is None:
        print("==> DataParallel Training")
        args.multigpu = True
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
    else:
        print("==> Single GPU Training")
        torch.cuda.set_device(args.gpu)

    assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."

    save_path = save_path_formatter(args, parser)
    args.save_path = 'checkpoints' / save_path
    if (args.rank == 0):
        print('=> number of GPU: ', args.gpu_num)
        print("=> information will be saved in {}".format(args.save_path))
    args.save_path.makedirs_p()
    torch.manual_seed(args.seed)

    ##############################    Data loading part    ################################
    if args.dataset == 'KITTI':
        args.max_depth = 80.0
    elif args.dataset == 'NYU':
        args.max_depth = 10.0

    train_set = MyDataset(args, train=True)
    test_set = MyDataset(args, train=False)

    if (args.rank == 0):
        print("=> Dataset: ", args.dataset)
        print("=> Data height: {}, width: {} ".format(args.height, args.width))
        print('=> train samples_num: {}  '.format(len(train_set)))
        print('=> test  samples_num: {}  '.format(len(test_set)))

    train_sampler = None
    test_sampler = None
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_set)
        test_sampler = torch.utils.data.distributed.DistributedSampler(
            test_set, shuffle=False)

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(test_set,
                                             batch_size=1,
                                             shuffle=(train_sampler is None),
                                             num_workers=args.workers,
                                             pin_memory=True,
                                             sampler=test_sampler)

    if args.epoch_size == 0:
        args.epoch_size = len(train_loader)
    cudnn.benchmark = True
    #########################################################################################

    ###################### Setting Network, Loss, Optimizer part ###################
    if (args.rank == 0):
        print("=> creating model")
    Model = LDRN(args)
    ############################### Number of model parameters ##############################
    num_params_encoder = 0
    num_params_decoder = 0
    for p in Model.encoder.parameters():
        num_params_encoder += p.numel()
    for p in Model.decoder.parameters():
        num_params_decoder += p.numel()
    if (args.rank == 0):
        print("===============================================")
        print("model encoder parameters: ", num_params_encoder)
        print("model decoder parameters: ", num_params_decoder)
        print("Total parameters: {}".format(num_params_encoder +
                                            num_params_decoder))
        trainable_params = sum(
            [np.prod(p.shape) for p in Model.parameters() if p.requires_grad])
        print("Total trainable parameters: {}".format(trainable_params))
        print("===============================================")
    ############################### apex distributed package wrapping ########################
    if args.distributed:
        if args.norm == 'BN':
            Model = nn.SyncBatchNorm.convert_sync_batchnorm(Model)
            if (args.rank == 0):
                print("=> use SyncBatchNorm")
        Model = Model.cuda(args.gpu)
        Model = torch.nn.parallel.DistributedDataParallel(
            Model,
            device_ids=[args.gpu],
            output_device=args.gpu,
            find_unused_parameters=True)
        print("=> Model Initialized on GPU: {} - Distributed Traning".format(
            args.gpu))
        enc_param = Model.module.encoder.parameters()
        dec_param = Model.module.decoder.parameters()
    elif args.gpu is None:
        Model = Model.cuda()
        Model = torch.nn.DataParallel(Model)
        print("=> Model Initialized - DataParallel")
        enc_param = Model.module.encoder.parameters()
        dec_param = Model.module.decoder.parameters()
    else:
        Model = Model.cuda(args.gpu)
        print("=> Model Initialized on GPU: {} - Single GPU training".format(
            args.gpu))
        enc_param = Model.encoder.parameters()
        dec_param = Model.decoder.parameters()

    ###########################################################################################

    ################################ pretrained model loading #################################
    if args.model_dir != '':
        #Model.load_state_dict(torch.load(args.model_dir,map_location='cuda:'+args.gpu_num))
        Model.load_state_dict(torch.load(args.model_dir))
        if (args.rank == 0):
            print('=> pretrained model is created')
    #############################################################################################

    ############################## optimizer and criterion setting ##############################
    optimizer = torch.optim.AdamW([{
        'params': Model.module.encoder.parameters(),
        'weight_decay': args.weight_decay,
        'lr': args.lr
    }, {
        'params': Model.module.decoder.parameters(),
        'weight_decay': 0,
        'lr': args.lr
    }],
                                  eps=args.adam_eps)
    ##############################################################################################
    logger = None

    ####################################### Training part ##########################################

    if (args.rank == 0):
        print("training start!")

    loss = train_net(args, Model, optimizer, train_loader, val_loader,
                     args.epochs, logger)

    if (args.rank == 0):
        print("training is finished")