class TrainingConfing(TrainingConfigBase): lib_dir = lib_dir num_epochs = 40 val_interval = 1 weight_decay = 5e-4 inner_iters = 10 K = 5 sigma = 0.01 eps = 0.3 create_optimizer = SGDOptimizerMaker(lr=1e-2 / K, momentum=0.9, weight_decay=weight_decay) create_lr_scheduler = PieceWiseConstantLrSchedulerMaker( milestones=[30, 35, 39], gamma=0.1) create_loss_function = None # create_attack_method = None create_attack_method = \ IPGDAttackMethodMaker(eps = 0.3, sigma = 0.01, nb_iters = 40, norm = np.inf, mean = torch.tensor(np.array([0]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis]), std = torch.tensor(np.array([1]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis])) create_evaluation_attack_method = \ IPGDAttackMethodMaker(eps = 0.3, sigma = 0.01, nb_iters = 40, norm = np.inf, mean=torch.tensor( np.array([0]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis]), std=torch.tensor(np.array([1]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis]))
class TrainingConfing(TrainingConfigBase): lib_dir = lib_dir num_epochs = 105 val_interval = 5 create_optimizer = SGDOptimizerMaker(lr=5e-2, momentum=0.9, weight_decay=5e-4) create_lr_scheduler = PieceWiseConstantLrSchedulerMaker( milestones=[75, 90, 100], gamma=0.1) create_loss_function = torch.nn.CrossEntropyLoss create_attack_method = \ IPGDAttackMethodMaker(eps = 8/255.0, sigma = 2/255.0, nb_iters = 10, norm = np.inf, mean = torch.tensor(np.array([0]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis]), std = torch.tensor(np.array([1]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis])) create_evaluation_attack_method = \ IPGDAttackMethodMaker(eps = 8/255.0, sigma = 2/255.0, nb_iters = 20, norm = np.inf, mean=torch.tensor( np.array([0]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis]), std=torch.tensor(np.array([1]).astype(np.float32)[np.newaxis, :, np.newaxis, np.newaxis]))
class TrainingConfing(TrainingConfigBase): lib_dir = lib_dir num_epochs = 10 val_interval = 2 create_optimizer = SGDOptimizerMaker(lr=1e-1, momentum=0.9, weight_decay=1e-3) create_lr_scheduler = PieceWiseConstantLrSchedulerMaker( milestones=[5, 7, 9], gamma=0.1) create_loss_function = torch.nn.CrossEntropyLoss