def main(): add_pitch, add_roll, add_filter = False, False, True n_samples, step = 50, 50 load_data = LoadHAR(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step) conf = ModelConfiguration() conf.load_datasets( [load_data.uci_mhealth, load_data.idash, load_data.wisdm1]) user_idx = -1 user = None # Create a time-string for our cv run if user is not None: train_idx = conf.users != user test_idx = conf.users == user conf.cv = ((train_idx, test_idx), ) for train_index, test_index in conf.cv: conf.user = user model = RNN(n_in=(n_samples, conf.n_features), n_hidden=[50, 50], dropout_probability=0.5, n_out=conf.n_classes, ccf=False, trans_func=rectify, out_func=softmax) if len(conf.cv) > 1: user_idx += 1 conf.user = conf.user_names[user_idx] # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, conf.d, conf.user) paths.path_exists(model.root_path) rmdir(root_path) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False conf.run(train_index, test_index, lr=0.002, n_epochs=300, model=model, train=train, load_data=load_data)
def run_sdgmssl_mnist(): """ Train a skip deep generative model on the mnist dataset with 100 evenly distributed labels. """ seed = np.random.randint(1, 2147462579) n_labeled = 100 # The total number of labeled data points. mnist_data = mnist.load_semi_supervised(n_labeled=n_labeled, filter_std=0.0, seed=seed, train_valid_combine=True) n, n_x = mnist_data[0][0].shape # Datapoints in the dataset, input features. n, n_x = int(n), int(n_x) n_samples = 100 # The number of sampled labeled data points for each batch. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = SDGMSSL(n_x=n_x, n_a=100, n_z=100, n_y=10, qa_hid=[500, 500], qz_hid=[500, 500], qy_hid=[500, 500], px_hid=[500, 500], pa_hid=[500, 500], nonlinearity=rectify, batchnorm=True, x_dist='bernoulli') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model(*mnist_data) # Update the default function arguments. train_args['inputs']['batchsize_unlabeled'] = bs train_args['inputs']['batchsize_labeled'] = n_samples train_args['inputs']['beta'] = .1 train_args['inputs']['learningrate'] = 3e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs']['samples'] = 5 test_args['inputs']['samples'] = 5 validate_args['inputs']['samples'] = 5 # Evaluate the approximated classification error with 100 MC samples for a good estimate def custom_evaluation(model, path): mean_evals = model.get_output(mnist_data[2][0], 100) t_class = np.argmax(mnist_data[2][1], axis=1) y_class = np.argmax(mean_evals, axis=1) missclass = (np.sum(y_class != t_class, dtype='float32') / len(y_class)) * 100. train.write_to_logger("test 100-samples: %0.2f%%." % missclass) # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the skip deep generative model with %i labels. bn %s. seed %i." % ( n_labeled, str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000, # Any symbolic model variable can be annealed during # training with a tuple of (var_name, every, scale constant, minimum value). anneal=[("learningrate", 200, 0.75, 3e-5)])
def run_adgmssl_mnist(): """ Train a auxiliary deep generative model on the mnist dataset with 100 evenly distributed labels. """ n_labeled = 100 # The total number of labeled data points. n_samples = 100 # The number of sampled labeled data points for each batch. n_batches = 600 # The number of batches. mnist_data = mnist.load_semi_supervised(n_batches=n_batches, n_labeled=n_labeled, n_samples=n_samples, filter_std=0.0, seed=123456, train_valid_combine=True) n, n_x = mnist_data[0][0].shape # Datapoints in the dataset, input features. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = ADGMSSL(n_x=n_x, n_a=100, n_z=100, n_y=10, a_hidden=[500, 500], z_hidden=[500, 500], xhat_hidden=[500, 500], y_hidden=[500, 500], trans_func=rectify, x_dist='bernoulli') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model(*mnist_data) # Update the default function arguments. train_args['inputs']['batchsize'] = bs train_args['inputs']['batchsize_labeled'] = n_samples train_args['inputs']['beta'] = 0.01 * n train_args['inputs']['learningrate'] = 3e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs']['samples'] = 10 # if running a cpu: set this the no. of samples to 1. test_args['inputs']['samples'] = 1 validate_args['inputs']['samples'] = 1 # Evaluate the approximated classification error with 100 MC samples for a good estimate. def error_evaluation(*args): mean_evals = model.get_output(mnist_data[1][0], 100) t_class = np.argmax(mnist_data[1][1], axis=1) y_class = np.argmax(mean_evals, axis=1) missclass = (np.sum(y_class != t_class, dtype='float32') / len(y_class)) * 100. train.write_to_logger("test 100-samples: %0.2f%%." % missclass) # Define training loop. Output training evaluations every 1 epoch and the approximated good estimate # of the classification error every 10 epochs. train = TrainModel(model=model, anneal_lr=.75, anneal_lr_freq=200, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=error_evaluation) train.add_initial_training_notes("Training the auxiliary deep generative model with %i labels." % n_labeled) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=3000)
def main(): add_pitch, add_roll, add_filter = False, False, True batch_size = 128 (train_set, test_set, valid_set, (sequence_length, n_features, n_classes)), name = \ ld.LoadHAR().uci_hapt(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter) n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] n_train_batches = n_train // batch_size n_test_batches = n_test // batch_size n_valid_batches = n_test // batch_size print("n_train_batches: %d, n_test_batches: %d" % (n_train_batches, n_test_batches)) model = UFCNN(n_in=(sequence_length, n_features), n_filters=64, filter_size=7, pool_sizes=0, n_hidden=[512], dropout_probability=0.5, n_out=n_classes, downsample=1, trans_func=rectify, out_func=softmax, batch_size=batch_size) f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set, valid_set) train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.002 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 test_args['inputs']['batchsize'] = batch_size validate_args['inputs']['batchsize'] = batch_size model.log += "\nDataset: %s" % name model.log += "\nAdd pitch: %s\nAdd roll: %s" % (add_pitch, add_roll) model.log += "\nAdd filter separated signals: %s" % add_filter model.log += "\nTransfer function: %s" % model.transf.__name__ train = TrainModel(model=model, anneal_lr=0.9, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = True train.add_initial_training_notes("") train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_valid_batches=n_valid_batches, n_epochs=10000)
def run_sdgmssl_mnist(): """ Train a skip deep generative model on the mnist dataset with 100 evenly distributed labels. """ seed = np.random.randint(1, 2147462579) n_labeled = 100 # The total number of labeled data points. mnist_data = mnist.load_semi_supervised(n_labeled=n_labeled, filter_std=0.0, seed=seed, train_valid_combine=True) n, n_x = mnist_data[0][0].shape # Datapoints in the dataset, input features. n_samples = 100 # The number of sampled labeled data points for each batch. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = SDGMSSL(n_x=n_x, n_a=100, n_z=100, n_y=10, qa_hid=[500, 500], qz_hid=[500, 500], qy_hid=[500, 500], px_hid=[500, 500], pa_hid=[500, 500], nonlinearity=rectify, batchnorm=True, x_dist='bernoulli') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model(*mnist_data) # Update the default function arguments. train_args['inputs']['batchsize_unlabeled'] = bs train_args['inputs']['batchsize_labeled'] = n_samples train_args['inputs']['beta'] = .1 train_args['inputs']['learningrate'] = 3e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs']['samples'] = 5 test_args['inputs']['samples'] = 5 validate_args['inputs']['samples'] = 5 # Evaluate the approximated classification error with 100 MC samples for a good estimate def custom_evaluation(model, path): mean_evals = model.get_output(mnist_data[2][0], 100) t_class = np.argmax(mnist_data[2][1], axis=1) y_class = np.argmax(mean_evals, axis=1) missclass = (np.sum(y_class != t_class, dtype='float32') / len(y_class)) * 100. train.write_to_logger("test 100-samples: %0.2f%%." % missclass) # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the skip deep generative model with %i labels. bn %s. seed %i." % ( n_labeled, str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000, # Any symbolic model variable can be annealed during # training with a tuple of (var_name, every, scale constant, minimum value). anneal=[("learningrate", 200, 0.75, 3e-5)])
def run_adgmssl(): n_samples, step = 50, 25 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, lowpass=10, diff=False, step=step, normalize='segments', comp_magnitude=True, simple_labels=False, common_labels=False) # datasets = [load_data.uci_hapt, load_data.idash, load_data.uci_mhealth] X, y, name, users, stats = load_data.uci_hapt() if stats is not None: X = np.concatenate((X, stats), axis=1) limited_labels = y < 18 y = y[limited_labels] X = X[limited_labels] users = users[limited_labels] y_unique = np.unique(y) y = one_hot(y) # Reshape input samples to be a vector instead of samples x features X = np.reshape(X, (X.shape[0], -1)) # Split into test and training # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) train_idx = (users != 10) # & (users != 2) & (users != 3) test_idx = (users == 10) # | (users == 2) | (users == 3) X_train, X_test = X[train_idx], X[test_idx] y_train, y_test = y[train_idx], y[test_idx] # Split training into labelled and unlabelled. Optionally stratified by the label X_train_labelled, X_train_unlabelled, y_train_labelled, y_train_unlabelled = \ train_test_split(X_train, y_train, train_size=0.5, stratify=np.argmax(y_train, axis=1)) # Add some data from test set to unlabelled training set X_train_unlabelled = np.concatenate((X_train_unlabelled, X_test)) y_train_unlabelled = np.concatenate((y_train_unlabelled, y_test)) # Combine in sets train_set_labelled = (X_train_labelled, y_train_labelled) train_set_unlabelled = (X_train_unlabelled, y_train_unlabelled) test_set = (X_test, y_test) print('Train unlabelled size: ', train_set_unlabelled[0].shape) print('Train labelled size: ', train_set_labelled[0].shape) print('Test size: ', test_set[0].shape) n_test = test_set[0].shape n, n_x = train_set_unlabelled[0].shape n_labelled_samples, n_x = train_set_labelled[0].shape n_classes = y.shape[-1] bs = 64 n_batches = n // bs # Initialize the auxiliary deep generative model. model = ADGM(n_x=n_x, n_a=100, n_z=100, n_y=n_classes, a_hidden=[500, 500], z_hidden=[500, 500], xhat_hidden=[500, 500], y_hidden=[500, 500], trans_func=rectify, batchnorm=False, x_dist='gaussian') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set_unlabelled, train_set_labelled, test_set) # Update the default function arguments. train_args['inputs']['batchsize_unlabeled'] = bs train_args['inputs']['batchsize_labeled'] = n_labelled_samples train_args['inputs']['beta'] = 1 # 0.01 * n/n_labelled_samples train_args['inputs']['learningrate'] = 3e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs'][ 'samples'] = 1 # if running a cpu: set this the no. of samples to 1. test_args['inputs']['samples'] = 1 # validate_args['inputs']['samples'] = 1 # Evaluate the approximated classification error with 100 MC samples for a good estimate. def error_evaluation(model, path): mean_evals = model.get_output(test_set[0].astype(np.float32), 100) t_class = np.argmax(test_set[1].astype(np.float32), axis=1) y_class = np.argmax(mean_evals, axis=1) missclass = (np.sum(y_class != t_class, dtype='float32') / len(y_class)) * 100. train.write_to_logger("test 100-samples misclassification: %0.2f%%." % missclass) plt.clf() fig, axarr = plt.subplots(nrows=1, ncols=2) axarr[0].plot(t_class, color='red') axarr[0].plot(y_class, linestyle='dotted') cm = confusion_matrix(t_class, y_class) cm = cm.astype('float') / (cm.sum(axis=1)[:, np.newaxis] + 1e-6) axarr[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) axarr[1].set_ylabel('True') axarr[1].set_xlabel('Predicted') fig.set_size_inches(18, 10) fig.savefig(path, dpi=100) plt.close(fig) # Plot reconstruction plt.clf() f, axarr = plt.subplots(nrows=len(y_unique), ncols=1) for idx, y_l in enumerate(y_unique): act_idx = np.argmax(y_test, axis=1) == y_l test_act = test_set[0][act_idx] test_y = test_set[1][act_idx] z = model.fz(test_act, test_y, 1).eval() x_hat = model.f_xhat(z, test_y, 1).eval() axarr[idx].plot(test_act[0], color='red') axarr[idx].plot(x_hat[0], color='blue', linestyle='dotted') f.set_size_inches(12, 20) f.savefig(path.strip('.png') + '_fit.png', dpi=100) plt.close(f) # Define training loop. Output training evaluations every 1 epoch and the approximated good estimate # of the classification error every 10 epochs. train = TrainModel(model=model, anneal_lr=.75, anneal_lr_freq=100, output_freq=1, pickle_f_custom_freq=50, f_custom_eval=error_evaluation) train.add_initial_training_notes( "Training the auxiliary deep generative model with %i labels." % n_labelled_samples) train.write_to_logger( "Using reduced HAPT dataset with Walking, Stairs, Inactive classes") train.write_to_logger("Normalizing: %s" % load_data.normalize) train.write_to_logger("Simple labels: %s" % load_data.simple_labels) train.write_to_logger("Common labels: %s" % load_data.common_labels) train.write_to_logger("Sequence length: %d" % load_data.n_samples) train.write_to_logger("Step: %d" % load_data.step) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (load_data.add_pitch, load_data.add_roll)) train.write_to_logger("Only magnitude: %s" % load_data.comp_magnitude) train.write_to_logger("Lowpass: %s" % str(load_data.lowpass)) train.write_to_logger("Add filter separated signals: %s" % load_data.add_filter) train.write_to_logger("Differentiate: %s" % load_data.differentiate) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000)
def main(): n_samples, step = 200, 200 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, lowpass=None, step=step, normalize='segments', comp_magnitude=True, simple_labels=False, common_labels=False) X, y, name, users, stats = load_data.uci_hapt() users = ['%s%02d' % (name, user) for user in users] limited_labels = y < 20 y = y[limited_labels] X = X[limited_labels].astype('float32') users = np.char.asarray(users)[limited_labels] y_unique = np.unique(y) cv = StratifiedShuffleSplit(y, n_iter=1, test_size=0.1, random_state=0) for (train_index, test_index) in cv: x_train, x_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] n_win, n_samples, n_features = x_train.shape train_set = (x_train, y_train) test_set = (x_test, y_test) print('Train size: ', train_set[0].shape) print('Test size: ', test_set[0].shape) n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] batch_size = 64 n_test_batches = n_test // batch_size n_train_batches = n_train // batch_size model = FCAE(n_in=(int(n_samples), int(n_features)), filters=[256, 128, 32], pool_sizes=[0], n_hidden=[0], n_out=0, trans_func=rectify, stats=0) # Build model f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set, None) def f_custom(model, path): plt.clf() f, axarr = plt.subplots(nrows=len(y_unique), ncols=1) for idx, y_l in enumerate(y_unique): act_idx = y_test == y_l test_act = test_set[0][act_idx] out = model.get_output(test_act).eval() axarr[idx].plot(test_act[0], color='red') axarr[idx].plot(out[0], color='blue', linestyle='dotted') f.set_size_inches(12, 20) f.savefig(path, dpi=100) plt.close(f) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=100, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=f_custom) train.pickle = False train.write_to_logger("Normalizing: %s" % load_data.normalize) train.write_to_logger("Simple labels: %s" % load_data.simple_labels) train.write_to_logger("Common labels: %s" % load_data.common_labels) train.write_to_logger("Step: %d" % load_data.step) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (load_data.add_pitch, load_data.add_roll)) train.write_to_logger("Only magnitude: %s" % load_data.comp_magnitude) train.write_to_logger("Lowpass: %s" % str(load_data.lowpass)) train.write_to_logger("Add filter separated signals: %s" % load_data.add_filter) test_args['inputs']['batchsize'] = batch_size train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.003 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 1e-6 validate_args['inputs']['batchsize'] = batch_size train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_epochs=2000)
def main(): add_pitch, add_roll, add_filter = True, True, True n_samples, step = 200, 50 shuffle = True batch_size = 64 (train_set, test_set, valid_set, (sequence_length, n_features, n_classes)), name = \ ld.LoadHAR().uci_hapt(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step, shuffle=shuffle) # The data is structured as (samples, sequence, features) but to properly use the convolutional RNN we need a longer # time factor = 5 sequence_length *= factor n_train = train_set[0].shape[0] // factor print("Resizing train set from %d to %d" % (train_set[0].shape[0], n_train * factor)) train_set = (np.reshape(train_set[0][:factor * n_train], (n_train, sequence_length, n_features)), np.reshape(train_set[1][:factor * n_train], (n_train, factor, n_classes))) n_test = test_set[0].shape[0] // factor print("Resizing test set from %d to %d" % (test_set[0].shape[0], n_test * factor)) test_set = (np.reshape(test_set[0][:factor * n_test], (n_test, sequence_length, n_features)), np.reshape(test_set[1][:factor * n_test], (n_test, factor, n_classes))) valid_set = test_set n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] n_valid = valid_set[0].shape[0] n_train_batches = n_train // batch_size n_test_batches = n_test // batch_size n_valid_batches = n_valid // batch_size print("n_train_batches: %d, n_test_batches: %d, n_valid_batches: %d" % (n_train_batches, n_test_batches, n_valid_batches)) n_conv = 1 model = RCL_RNN(n_in=(sequence_length, n_features), n_filters=[64] * n_conv, filter_sizes=[3] * n_conv, pool_sizes=[2] * n_conv, n_hidden=[100], conv_dropout=0.4, rcl=[3, 3, 3, 3, 3], rcl_dropout=0.4, dropout_probability=0.5, n_out=n_classes, downsample=1, trans_func=rectify, out_func=softmax, batch_size=batch_size, factor=factor) f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set, valid_set) train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.004 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 1e-6 test_args['inputs']['batchsize'] = batch_size validate_args['inputs']['batchsize'] = batch_size model.log += "\nDataset: %s" % name model.log += "\nTraining samples: %d" % n_train model.log += "\nTest samples: %d" % n_test model.log += "\nSequence length: %d" % (sequence_length / factor) model.log += "\nTime steps: %d" % factor model.log += "\nStep: %d" % step model.log += "\nShuffle: %s" % shuffle model.log += "\nAdd pitch: %s\nAdd roll: %s" % (add_pitch, add_roll) model.log += "\nAdd filter separated signals: %s" % add_filter model.log += "\nTransfer function: %s" % model.transf train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = True train.add_initial_training_notes("") train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_valid_batches=n_valid_batches, n_epochs=2000)
def run_adgmssl_mnist(): """ Train a auxiliary deep generative model on the mnist dataset with 100 evenly distributed labels. """ n_labeled = 100 # The total number of labeled data points. n_samples = 100 # The number of sampled labeled data points for each batch. n_batches = 600 # The number of batches. mnist_data = mnist.load_semi_supervised(n_batches=n_batches, n_labeled=n_labeled, n_samples=n_samples, filter_std=0.0, seed=123456, train_valid_combine=True) n, n_x = mnist_data[0][ 0].shape # Datapoints in the dataset, input features. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = ADGMSSL(n_x=n_x, n_a=100, n_z=100, n_y=10, a_hidden=[500, 500], z_hidden=[500, 500], xhat_hidden=[500, 500], y_hidden=[500, 500], trans_func=rectify, x_dist='bernoulli') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( *mnist_data) # Update the default function arguments. train_args['inputs']['batchsize'] = bs train_args['inputs']['batchsize_labeled'] = n_samples train_args['inputs']['beta'] = 0.01 * n train_args['inputs']['learningrate'] = 3e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs'][ 'samples'] = 10 # if running a cpu: set this the no. of samples to 1. test_args['inputs']['samples'] = 1 validate_args['inputs']['samples'] = 1 # Evaluate the approximated classification error with 100 MC samples for a good estimate. def error_evaluation(*args): mean_evals = model.get_output(mnist_data[1][0], 100) t_class = np.argmax(mnist_data[1][1], axis=1) y_class = np.argmax(mean_evals, axis=1) missclass = (np.sum(y_class != t_class, dtype='float32') / len(y_class)) * 100. train.write_to_logger("test 100-samples: %0.2f%%." % missclass) # Define training loop. Output training evaluations every 1 epoch and the approximated good estimate # of the classification error every 10 epochs. train = TrainModel(model=model, anneal_lr=.75, anneal_lr_freq=200, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=error_evaluation) train.add_initial_training_notes( "Training the auxiliary deep generative model with %i labels." % n_labeled) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=3000)
def main(): add_pitch, add_roll, add_filter = False, False, True n_samples, step = 200, 200 load_data = LoadHAR(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step) batch_size = 64 # Define datasets and load iteratively datasets = [ load_data.idash, load_data.wisdm1, load_data.uci_mhealth, load_data.uci_hapt ] X, y, name, users = datasets[0]() users = ['%s_%02d' % (name, user) for user in users] for dataset in datasets[1:]: X_tmp, y_tmp, name_tmp, users_tmp = dataset() X = np.concatenate((X, X_tmp)) y = np.concatenate((y, y_tmp)) for user in users_tmp: users.append('%s_%02d' % (name_tmp, user)) name += '_' + name_tmp users = np.array(users) print('Users: %d' % len(np.unique(users))) print(X.shape) n_windows, sequence_length, n_features = X.shape y = one_hot(y, n_classes=len(ACTIVITY_MAP)) n_classes = y.shape[-1] # Create a time-string for our cv run d = str( datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')) cv = LeaveOneLabelOut(users) user_idx = 0 user_names = np.unique(users) user = None if user is not None: train_idx = users != user test_idx = users == user cv = ((train_idx, test_idx), ) for train_index, test_index in cv: user = user_names[user_idx] user_idx += 1 X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # Scale data using training data scaler = StandardScaler().fit(X_train.reshape((-1, n_features))) n_windows = X_train.shape[0] X_train = scaler.transform(X_train.reshape((-1, n_features))).reshape( (n_windows, sequence_length, n_features)) n_windows = X_test.shape[0] X_test = scaler.transform(X_test.reshape((-1, n_features))).reshape( (n_windows, sequence_length, n_features)) print('Xtrain mean: %f\tstd: %f' % (X_train.mean(), X_train.std())) print('Xtest mean: %f\tstd: %f' % (X_test.mean(), X_test.std())) train_set = (X_train, y_train) test_set = (X_test, y_test) valid_set = test_set n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] n_test_batches = 1 n_valid_batches = None batch_size = n_test n_train_batches = n_train // batch_size print("n_train_batches: %d, n_test_batches: %d" % (n_train_batches, n_test_batches)) model = ResNet(n_in=(sequence_length, n_features), n_filters=[32, 32, 64, 64], pool_sizes=[2, 1, 2, 1], n_hidden=[512], conv_dropout=0.5, dropout=0.5, n_out=n_classes, trans_func=rectify, out_func=softmax, batch_size=batch_size, batch_norm=True) if len(cv) > 1: # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, d, user) paths.path_exists(model.root_path) rmdir(root_path) # Build model f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set, None) train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.001 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 1e-6 test_args['inputs']['batchsize'] = batch_size validate_args['inputs']['batchsize'] = batch_size # Define confusion matrix cfm = ConfusionMatrix(n_classes=n_classes, class_names=list(ACTIVITY_MAP.values())) print(n_classes, len(list(ACTIVITY_MAP.values()))) def f_custom(model, path): mean_evals = model.get_output(X_test).eval() t_class = np.argmax(y_test, axis=1) y_class = np.argmax(mean_evals, axis=1) # cfm.batchAdd(t_class, y_class) # print(cfm) cm = confusion_matrix(t_class, y_class) cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.clf() plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.colorbar() plt.ylabel('True') plt.xlabel('Predicted') plt.savefig(path) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=100, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=f_custom) train.pickle = False train.add_initial_training_notes( "Standardizing data after adding features\ \nUsing striding instead of pooling") train.write_to_logger("Dataset: %s" % name) train.write_to_logger("LOO user: %s" % user) train.write_to_logger("Training samples: %d" % n_train) train.write_to_logger("Test samples: %d" % n_test) train.write_to_logger("Sequence length: %d" % sequence_length) train.write_to_logger("Step: %d" % step) train.write_to_logger("Shuffle: %s" % False) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (add_pitch, add_roll)) train.write_to_logger("Add filter separated signals: %s" % add_filter) train.write_to_logger("Transfer function: %s" % model.transf) train.write_to_logger("Network Architecture ---------------") for layer in get_all_layers(model.model): # print(layer.name, ": ", get_output_shape(layer)) train.write_to_logger(layer.name + ": " + str(get_output_shape(layer))) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_valid_batches=n_valid_batches, n_epochs=500) # Reset logging handlers = train.logger.handlers[:] for handler in handlers: handler.close() train.logger.removeHandler(handler) del train.logger
def run_rae_har(): seed = np.random.randint(1, 2147462579) # def sinus_seq(period, samples, length): # X = np.linspace(-np.pi*(samples/period), np.pi*(samples/period), samples) # X = np.reshape(np.sin(X), (-1, length, 1)) # X += np.random.randn(*X.shape)*0.1 # # X = (X - np.min(X))/(np.max(X) - np.min(X)) # return X, np.ones((samples/length, 1)) # # X1, y1 = sinus_seq(40, 100000, 50) # X2, y2 = sinus_seq(20, 40000, 50) # # X = np.concatenate((X1, X2)).astype('float32') # y = np.concatenate((y1*0, y2*1), axis=0).astype('int') # # dim_samples, dim_sequence, dim_features = X.shape # X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) n_samples, step = 50, 25 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, diff=False, step=step, normalize='segments', comp_magnitude=False, simple_labels=False, common_labels=False) X, y, name, users, stats = load_data.uci_hapt() limited_labels = y < 18 y = y[limited_labels] X = X[limited_labels].astype(np.float32) users = users[limited_labels] # Compress labels for idx, label in enumerate(np.unique(y)): if not np.equal(idx, label): y[y == label] = idx y_unique = np.unique(y) y = one_hot(y, len(y_unique)) num_classes = len(y_unique) # Split into train and test stratified by users X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=np.argmax(y, axis=1), random_state=1) # Combine in sets train_set = (X_train, y_train) test_set = (X_test, y_test) print('Train size: ', train_set[0].shape) print('Test size: ', test_set[0].shape) n, n_l, n_c = train_set[0].shape # Datapoints in the dataset, input features. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = RAE(n_c=int(n_c), n_l=int(n_l), px_hid=[256], enc_rnn=256, dec_rnn=256, nonlinearity=rectify, batchnorm=False) # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model(train_set, test_set) # Update the default function arguments. train_args['inputs']['batchsize'] = bs train_args['inputs']['learningrate'] = 1e-3 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 def custom_evaluation(model, path): # Get model output x_ = test_set[0] y_ = test_set[1] xhat = model.f_px(x_) # reduce y to integers y_ = np.argmax(y_, axis=1) plt.clf() f, axarr = plt.subplots(nrows=num_classes, ncols=n_c) for idx, y_l in enumerate(y_unique): l_idx = y_ == y_l for c in range(n_c): axarr[idx, c].plot(x_[l_idx, :, c][:2].reshape(-1), color='red') axarr[idx, c].plot(xhat[l_idx, :, c][:2].reshape(-1), color='blue', linestyle='dotted') f.set_size_inches(12, 3*num_classes) f.savefig(path, dpi=100, format='png') plt.close(f) # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the rae with bn %s. seed %i." % (str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=10000, anneal=[("learningrate", 100, 0.75, 3e-5)])
def main(): n_samples, step = 50, 25 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, diff=False, step=step, normalize='segments', comp_magnitude=False, simple_labels=False, common_labels=False) X, y, name, users, stats = load_data.uci_hapt() limited_labels = y < 18 y = y[limited_labels] X = X[limited_labels].astype(np.float32) users = users[limited_labels] # Compress labels for idx, label in enumerate(np.unique(y)): if not np.equal(idx, label): y[y == label] = idx y_unique = np.unique(y) y = one_hot(y, len(y_unique)) num_classes = len(y_unique) # Split into train and test stratified by users X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=np.argmax( y, axis=1), random_state=1) # Combine in sets train_set = (X_train, y_train) test_set = (X_test, y_test) print('Train size: ', train_set[0].shape) print('Test size: ', test_set[0].shape) n, n_l, n_c = train_set[ 0].shape # Datapoints in the dataset, input features. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. model = CAE(n_in=(int(n_l), int(n_c)), filters=[8, 16, 32, 64, 128], n_hidden=128, n_out=n_samples, trans_func=leaky_rectify, stats=0) # Copy script to output folder copy_script(__file__, model) # Build model f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set) def custom_evaluation(model, path): # Get model output x_ = test_set[0] y_ = test_set[1] xhat = model.f_px(x_) # reduce y to integers y_ = np.argmax(y_, axis=1) plt.clf() f, axarr = plt.subplots(nrows=num_classes, ncols=n_c) for idx, y_l in enumerate(y_unique): l_idx = y_ == y_l for c in range(n_c): axarr[idx, c].plot(x_[l_idx, :, c][:2].reshape(-1), color='red') axarr[idx, c].plot(xhat[l_idx, :, c][:2].reshape(-1), color='blue', linestyle='dotted') f.set_size_inches(12, 3 * num_classes) f.savefig(path, dpi=100, format='png') plt.close(f) train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.pickle = False train.write_to_logger("Normalizing: %s" % load_data.normalize) train.write_to_logger("Simple labels: %s" % load_data.simple_labels) train.write_to_logger("Common labels: %s" % load_data.common_labels) train.write_to_logger("Sequence length: %d" % load_data.n_samples) train.write_to_logger("Step: %d" % load_data.step) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (load_data.add_pitch, load_data.add_roll)) train.write_to_logger("Only magnitude: %s" % load_data.comp_magnitude) train.write_to_logger("Lowpass: %s" % str(load_data.lowpass)) train.write_to_logger("Add filter separated signals: %s" % load_data.add_filter) train.write_to_logger("Differentiate: %s" % load_data.differentiate) train_args['inputs']['batchsize'] = bs train_args['inputs']['learningrate'] = 1e-3 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=int(n_batches), n_epochs=2000, anneal=[("learningrate", 100, 0.75, 3e-5)])
def main(): n_samples, step = 40, 20 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, step=step, normalize='channels', comp_magnitude=False, simple_labels=True, common_labels=False) conf = ModelConfiguration() conf.load_datasets([load_data.uci_hapt], label_limit=6) user_idx = -1 user = None # 'UCI HAPT10' if user is not None: train_idx = conf.users != user test_idx = conf.users == user conf.cv = ((train_idx, test_idx), ) print('Testing user: %s' % user) else: # Cross validate on users conf.cv = LeavePLabelOut(conf.users, p=1) # Divide into K folds balanced on labels # conf.cv = StratifiedKFold(conf.users, n_folds=10) # And shuffle # conf.cv = StratifiedShuffleSplit(np.argmax(conf.y, axis=1), n_iter=1, test_size=0.1, random_state=None) # Pure shuffle # conf.cv = ShuffleSplit(conf.y.shape[0], n_iter=2, test_size=0.1) for train_index, test_index in conf.cv: conf.user = user model = tconvRNN(n_in=(n_samples, conf.n_features), n_filters=[64, 64, 64, 64], filter_sizes=[5] * 4, pool_sizes=[0] * 4, n_hidden=[128, 128], conv_dropout=0.3, rnn_in_dropout=0.0, rnn_hid_dropout=0.0, output_dropout=0.5, n_out=conf.n_classes, trans_func=leaky_rectify, out_func=softmax, stats=conf.stats) if len(conf.cv) > 1: user_idx += 1 if len(conf.cv) == len(conf.user_names): conf.user = conf.user_names[user_idx] else: conf.user = conf.name + ' K_%d' % user_idx # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, conf.d, conf.user) paths.path_exists(model.root_path) rmdir(root_path) scriptpath = path.realpath(__file__) filename = path.basename(scriptpath) print(scriptpath, model.root_path, filename) shutil.copy(scriptpath, model.root_path + '/' + filename) train = TrainModel(model=model, anneal_lr=0.9, anneal_lr_freq=1, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False train.write_to_logger( "Using StratifiedShuffleSplit with n_iter=1, test_size=0.1, random_state=None" ) conf.run(train_index, test_index, lr=0.003, n_epochs=500, model=model, train=train, load_data=load_data, batch_size=100)
def run_cnn(): add_pitch, add_roll, add_filter = False, False, True n_samples, step = 200, 100 shuffle = False batch_size = 64 (train_set, test_set, valid_set, (sequence_length, n_features, n_classes)), name, users = \ ld.LoadHAR().uci_hapt(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step, shuffle=shuffle) X = np.concatenate((train_set[0], test_set[0]), axis=0) y = np.concatenate((train_set[1], test_set[1]), axis=0) d = str( datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d%H%M%S')) lol = LeaveOneLabelOut(users) user = 0 for train_index, test_index in lol: user += 1 X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] train_set = (X_train, y_train) test_set = (X_test, y_test) valid_set = test_set n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] n_train_batches = n_train // batch_size n_test_batches = n_test // batch_size n_valid_batches = n_test // batch_size print("n_train_batches: %d, n_test_batches: %d" % (n_train_batches, n_test_batches)) model = CNN(n_in=(sequence_length, n_features), n_filters=[64, 64, 64, 64], filter_sizes=[5, 5, 3, 3], pool_sizes=[2, 2, 2, 2], conv_dropout=0.2, n_hidden=[512], dropout_probability=0.5, n_out=n_classes, downsample=0, ccf=False, trans_func=rectify, out_func=softmax, batch_size=batch_size, batch_norm=False) # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%d" % (root_path, d, user) paths.path_exists(model.root_path) rmdir(root_path) f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set, valid_set) train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.003 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 1e-6 test_args['inputs']['batchsize'] = batch_size validate_args['inputs']['batchsize'] = batch_size train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=100, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = True train.add_initial_training_notes("") train.write_to_logger("Dataset: %s" % name) train.write_to_logger("LOO user: %d" % user) train.write_to_logger("Training samples: %d" % n_train) train.write_to_logger("Test samples: %d" % n_test) train.write_to_logger("Sequence length: %d" % sequence_length) train.write_to_logger("Step: %d" % step) train.write_to_logger("Shuffle: %s" % shuffle) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (add_pitch, add_roll)) train.write_to_logger("Add filter separated signals: %s" % add_filter) train.write_to_logger("Transfer function: %s" % model.transf) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_valid_batches=n_valid_batches, n_epochs=500) # Reset logging handlers = train.logger.handlers[:] for handler in handlers: handler.close() train.logger.removeHandler(handler) del train.logger
bl_dropout=0.5, slicers=slicers, bn=True) # Copy model to output folder copy_script(__file__, model) f_train, f_test, f_validate, train_args, test_args, validate_args, predict = model.build_model( train_set, test_set, weights=class_weights) train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.004 # test_args['inputs']['batchsize'] = batch_size try: train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=None) train.train_model( f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=1, n_epochs=200, # Any symbolic model variable can be annealed during # training with a tuple of (var_name, every, scale constant, minimum value). anneal=[("learningrate", 10, 0.75, 3e-4)])
def run_vrae_har(): seed = np.random.randint(1, 2147462579) # def sinus_seq(period, samples, length): # X = np.linspace(-np.pi*(samples/period), np.pi*(samples/period), samples) # X = np.reshape(np.sin(X), (-1, length, 1)) # X += np.random.randn(*X.shape)*0.1 # # X = (X - np.min(X))/(np.max(X) - np.min(X)) # return X, np.ones((samples/length, 1)) # # X1, y1 = sinus_seq(20, 100000, 40) # X2, y2 = sinus_seq(12, 100000, 40) # X3, y3 = sinus_seq(8, 100000, 40) # # X = np.concatenate((X1, X2, X3)).astype('float32') # y = np.concatenate((y1*0, y2*1, y3*2), axis=0).astype('int')[:, 0] # y_unique = np.unique(list(y)) # # y = one_hot(y, len(y_unique)) # # dim_samples, dim_sequence, dim_features = X.shape # X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) ## # HAR data # X, y, users, stats = har.load() n_samples, step = 50, 25 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, diff=False, step=step, normalize='segments', comp_magnitude=False, simple_labels=False, common_labels=False) X, y, name, users, stats = load_data.uci_hapt() limited_labels = y < 18 y = y[limited_labels] X = X[limited_labels].astype(np.float32) users = users[limited_labels] # X -= X.mean(axis=0) # Compress labels for idx, label in enumerate(np.unique(y)): if not np.equal(idx, label): y[y == label] = idx y_unique = np.unique(y) y = one_hot(y, len(y_unique)) dim_samples, dim_sequence, n_c = X.shape num_classes = len(y_unique) # Split into train and test stratified by users X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=np.argmax( y, axis=1), random_state=1) ## # Combine in sets train_set = (X_train, y_train) test_set = (X_test, y_test) print('Train size: ', train_set[0].shape) print('Test size: ', test_set[0].shape) n, n_l, n_c = train_set[ 0].shape # Datapoints in the dataset, input features. n_batches = int(n / 100) # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = RVAE(n_c=n_c, n_z=256, qz_hid=[256, 256], px_hid=[256, 256], enc_rnn=256, dec_rnn=256, n_l=n_l, nonlinearity=rectify, batchnorm=False, x_dist='gaussian', px_nonlinearity=None) # Copy script to output folder copy_script(__file__, model) # Create output path for PCA plot makedirs(model.get_root_path() + '/training custom evals/pca') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set) # Update the default function arguments. train_args['inputs']['batchsize'] = bs train_args['inputs']['learningrate'] = 1e-3 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs']['samples'] = 1 train_args['inputs']['warmup'] = 1.1 def custom_evaluation(model, path): # Get model output x_ = test_set[0] y_ = test_set[1] qz = model.f_qz(x_, 1) px = model.f_px(x_, qz, 1) px_mu = model.f_mu(x_, qz, 1) px_var = np.exp(model.f_var(x_, qz, 1)) # reduce y to integers y_ = np.argmax(y_, axis=1) plt.clf() f, axarr = plt.subplots(nrows=num_classes, ncols=n_c * 2) for idx, y_l in enumerate(y_unique): l_idx = y_ == y_l for c in range(n_c): axarr[idx, c * 2].plot(x_[l_idx, :, c][:2].reshape(-1)) axarr[idx, c * 2].plot(px[l_idx, :, c][:2].reshape(-1), linestyle='dotted') axarr[idx, c * 2 + 1].plot(px_mu[l_idx, :, c][:2].reshape(-1), label="mu") axarr[idx, c * 2 + 1].plot(px_var[l_idx, :, c][:2].reshape(-1), label="var") plt.legend() f.set_size_inches(20, num_classes * 3) f.savefig(path, dpi=100, format='png') plt.close(f) # Plot PCA decomp z_pca = PCA(n_components=2).fit_transform(qz) palette = itertools.cycle(sns.color_palette()) plt.clf() plt.figure() for i in set(y_unique): plt.scatter(z_pca[y_ == i, 0], z_pca[y_ == i, 1], c=next(palette), alpha=0.8) plt.legend() plt.title('PCA of Z') plt.savefig(path.replace('custom_eval_plot', 'pca/z')) plt.close() def anneal_func(input): return input - 0.01 # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the vrae with bn %s. seed %i." % (str(model.batchnorm), seed)) train.train_model( f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000, # Any symbolic model variable can be annealed during # training with a tuple of (var_name, every, scale constant, minimum value). anneal=[("learningrate", 100, 0.75, 3e-5), ("warmup", 1, anneal_func, 0.1)]) image_to_movie.create(model.get_root_path() + '/training custom evals', rate=3)
def main(): add_pitch, add_roll, add_filter = False, False, True n_samples, step = 100, 50 shuffle = False batch_size = 64 (train_set, test_set, valid_set, (sequence_length, n_features, n_classes)), name, users = \ ld.LoadHAR().uci_hapt(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step, shuffle=shuffle) # The data is structured as (samples, sequence, features) but to properly use the convolutional RNN we need a longer # time factor = 5 sequence_length *= factor # Concat train and test data X = np.concatenate((train_set[0], test_set[0]), axis=0) y = np.concatenate((train_set[1], test_set[1]), axis=0) d = str( datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d%H%M%S')) lol = LeaveOneLabelOut(users) user = 0 for train_index, test_index in lol: user += 1 X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] train_set = (X_train, y_train) test_set = (X_test, y_test) n_train = train_set[0].shape[0] // factor print("Resizing train set from %d to %d" % (train_set[0].shape[0], n_train * factor)) train_set = (np.reshape(train_set[0][:factor * n_train], (n_train, sequence_length, n_features)), np.reshape(train_set[1][:factor * n_train], (n_train, factor, n_classes))) n_test = test_set[0].shape[0] // factor print("Resizing test set from %d to %d" % (test_set[0].shape[0], n_test * factor)) test_set = (np.reshape(test_set[0][:factor * n_test], (n_test, sequence_length, n_features)), np.reshape(test_set[1][:factor * n_test], (n_test, factor, n_classes))) valid_set = test_set n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] n_valid = valid_set[0].shape[0] n_test_batches = 1 n_valid_batches = 1 batch_size = n_test n_train_batches = n_train // batch_size print("n_train_batches: %d, n_test_batches: %d, n_valid_batches: %d" % (n_train_batches, n_test_batches, n_valid_batches)) n_conv = 6 model = conv_BRNN(n_in=(sequence_length, n_features), n_filters=[64] * n_conv, filter_sizes=[3] * n_conv, pool_sizes=[1, 2, 1, 2, 2, 2], n_hidden=[200], conv_dropout=0.2, dropout_probability=0.5, n_out=n_classes, downsample=1, trans_func=rectify, out_func=softmax, batch_size=batch_size, factor=factor) # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%d" % (root_path, d, user) paths.path_exists(model.root_path) rmdir(root_path) f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set, valid_set) test_args['inputs']['batchsize'] = batch_size validate_args['inputs']['batchsize'] = batch_size train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.003 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train = TrainModel(model=model, anneal_lr=0.9, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False train.add_initial_training_notes( "Standardizing data after adding features") train.write_to_logger("Dataset: %s" % name) train.write_to_logger("LOO user: %d" % user) train.write_to_logger("Training samples: %d" % n_train) train.write_to_logger("Test samples: %d" % n_test) train.write_to_logger("Sequence length: %d" % (sequence_length / factor)) train.write_to_logger("Step: %d" % step) train.write_to_logger("Time steps: %d" % factor) train.write_to_logger("Shuffle: %s" % shuffle) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (add_pitch, add_roll)) train.write_to_logger("Add filter separated signals: %s" % add_filter) train.write_to_logger("Transfer function: %s" % model.transf) train.train_model(f_train=f_train, train_args=train_args, f_test=f_test, test_args=test_args, f_validate=f_validate, validation_args=validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_valid_batches=n_valid_batches, n_epochs=500) # Reset logging handlers = train.logger.handlers[:] for handler in handlers: handler.close() train.logger.removeHandler(handler) del train.logger
def main(): add_pitch, add_roll, add_filter = False, False, True n_samples, step = 200, 200 load_data = LoadHAR(add_pitch=add_pitch, add_roll=add_roll, add_filter=add_filter, n_samples=n_samples, step=step) batch_size = 64 X, y, name, users, stats = load_data.uci_hapt() d = str(datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d%H%M%S')) lol = LeaveOneLabelOut(users) user = 0 for train_index, test_index in lol: user += 1 X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] train_set = (X_train, y_train) test_set = (X_test, y_test) valid_set = test_set n_train = train_set[0].shape[0] n_test = test_set[0].shape[0] n_test_batches = 1 n_valid_batches = 1 batch_size = n_test n_train_batches = n_train//batch_size print("n_train_batches: %d, n_test_batches: %d" % (n_train_batches, n_test_batches)) # num_1x1, num_2x1_proj, reduce_3x1, num_3x1, reduce_5x1, num_5x1 model = Incep(n_in=(sequence_length, n_features), inception_layers=[(8, 8, 0, 8, 0, 8), (16, 8, 0, 16, 0, 8), (32, 16, 0, 32, 0, 16), (32, 16, 0, 32, 0, 16), (64, 32, 0, 64, 0, 32), (64, 32, 0, 64, 0, 32)], pool_sizes=[2, 2, 0, 2, 0, 2], n_hidden=512, output_dropout=0.5, inception_dropout=0.2, n_out=n_classes, trans_func=rectify, out_func=softmax, batch_size=batch_size, batch_norm=False) # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%d" % (root_path, d, user) paths.path_exists(model.root_path) rmdir(root_path) # Build model f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model(train_set, test_set, valid_set) train_args['inputs']['batchsize'] = batch_size train_args['inputs']['learningrate'] = 0.002 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 1e-6 test_args['inputs']['batchsize'] = batch_size validate_args['inputs']['batchsize'] = batch_size train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False train.add_initial_training_notes("Standardizing data after adding features") train.write_to_logger("Dataset: %s" % name) train.write_to_logger("LOO user: %d" % user) train.write_to_logger("Training samples: %d" % n_train) train.write_to_logger("Test samples: %d" % n_test) train.write_to_logger("Sequence length: %d" % sequence_length) train.write_to_logger("Step: %d" % step) train.write_to_logger("Shuffle: %s" % shuffle) train.write_to_logger("Add pitch: %s\nAdd roll: %s" % (add_pitch, add_roll)) train.write_to_logger("Add filter separated signals: %s" % add_filter) train.write_to_logger("Transfer function: %s" % model.transf) train.write_to_logger("Network Architecture ---------------") for layer in get_all_layers(model.model): # print(layer.name, ": ", get_output_shape(layer)) train.write_to_logger(layer.name + ": " + str(get_output_shape(layer))) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_train_batches, n_test_batches=n_test_batches, n_valid_batches=n_valid_batches, n_epochs=500) # Reset logging handlers = train.logger.handlers[:] for handler in handlers: handler.close() train.logger.removeHandler(handler) del train.logger
def run_vae(): seed = np.random.randint(1, 2147462579) def sinus_seq(period, samples, length): X = np.linspace(-np.pi * (samples / period), np.pi * (samples / period), samples) X = np.reshape(np.sin(X), (-1, length)) X += np.random.randn(*X.shape) * 0.1 # X = (X - np.min(X))/(np.max(X) - np.min(X)) return X, np.ones((samples / length, 1)) X1, y1 = sinus_seq(40, 100000, 50) X2, y2 = sinus_seq(20, 40000, 50) X = np.concatenate((X1, X2)).astype('float32') y = np.concatenate((y1 * 0, y2 * 1), axis=0).astype('int') dim_samples, dim_features = X.shape X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) # X, y, users, stats = har.load() # # limited_labels = y < 5 # y = y[limited_labels] # X = X[limited_labels] # users = users[limited_labels] # # # Compress labels # for idx, label in enumerate(np.unique(y)): # if not np.equal(idx, label): # y[y == label] = idx # # y_unique = np.unique(y) # y = one_hot(y, len(y_unique)) # # dim_samples, dim_sequence, dim_features = X.shape # num_classes = len(y_unique) # # # Split into train and test stratified by users # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=users) # Combine in sets train_set = (X_train, y_train) test_set = (X_test, y_test) print('Train size: ', train_set[0].shape) print('Test size: ', test_set[0].shape) n, n_x = train_set[0].shape # Datapoints in the dataset, input features. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = VAE(n_x=int(n_x), n_z=16, z_hidden=[16], xhat_hidden=[32], x_dist='gaussian') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set) # Update the default function arguments. train_args['inputs']['batchsize'] = 100 train_args['inputs']['learningrate'] = 1e-3 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 def custom_evaluation(model, path): plt.clf() f, axarr = plt.subplots(nrows=len(np.unique(y)), ncols=1) for idx, y_l in enumerate(np.unique(y)): act_idx = test_set[1] == y_l test_act = test_set[0][act_idx[:, 0]] z = model.f_qz(test_act, 1) xhat = model.f_px(z, 1) axarr[idx].plot(test_act[:3].reshape(-1, 1), color='red') axarr[idx].plot(xhat[:3].reshape(-1, 1), color='blue', linestyle='dotted') f.set_size_inches(8, 5) f.savefig(path, dpi=100, format='png') plt.close(f) # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the rae with bn %s. seed %i." % (str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=10000, anneal=[("learningrate", 100, 0.75, 3e-5)])
# Evaluate the approximated classification error with 100 MC samples for a good estimate def custom_evaluation(model, path): mean_evals = model.get_output(mnist_data[2][0], 100) t_class = np.argmax(mnist_data[2][1], axis=1) y_class = np.argmax(mean_evals, axis=1) missclass = (np.sum(y_class != t_class, dtype='float32') / len(y_class)) * 100. train.write_to_logger("test 100-samples: %0.2f%%." % missclass) # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes( "Training the skip deep generative model with %i labels. bn %s. seed %i." % (n_labeled, str(model.batchnorm), seed)) train.train_model( f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000, # Any symbolic model variable can be annealed during # training with a tuple of (var_name, every, scale constant, minimum value).
def main(): n_samples, step = 200, 50 load_data = LoadHAR(add_pitch=True, add_roll=True, add_filter=True, n_samples=n_samples, step=step, normalize='segments', comp_magnitude=True, simple_labels=True, common_labels=True) conf = ModelConfiguration() conf.load_datasets([load_data.uci_hapt], label_limit=18) user_idx = -1 user = None # Create a time-string for our cv run if user is not None: train_idx = conf.users != user test_idx = conf.users == user conf.cv = ((train_idx, test_idx), ) else: # conf.cv = LeaveOneLabelOut(conf.users) conf.cv = StratifiedShuffleSplit(np.argmax(conf.y, axis=1), n_iter=10, test_size=0.1, random_state=None) for train_index, test_index in conf.cv: conf.user = user n_conv = 1 model = RCNN(n_in=(n_samples, conf.n_features), n_filters=[32], filter_sizes=[3] * n_conv, pool_sizes=[2] * n_conv, rcl=[2, 2, 2, 2], rcl_dropout=0.5, n_hidden=[512], dropout_probability=0.5, n_out=conf.n_classes, ccf=False, trans_func=rectify, out_func=softmax, batch_norm=True, stats=conf.stats) if len(conf.cv) > 1: user_idx += 1 if len(conf.cv) == len(conf.user_names): conf.user = conf.user_names[user_idx] else: conf.user = conf.name + ' K_%d' % user_idx # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, conf.d, conf.user) paths.path_exists(model.root_path) rmdir(root_path) # Copy script to output folder scriptpath = path.realpath(__file__) filename = path.basename(scriptpath) shutil.copy(scriptpath, model.root_path + '/' + filename) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False conf.run(train_index, test_index, lr=0.003, n_epochs=300, model=model, train=train, load_data=load_data, batch_size=64)
def custom_evaluation(model, path): # Dump encoder model.save_encoder() # Get model output x_ = test_set[0] xhat = model.f_px(x_) idx = np.random.randint(0, x_.shape[0]-5) plt.clf() f, axarr = plt.subplots(nrows=1, ncols=1) axarr.plot(x_[idx:idx+5, :, :].reshape(-1, x_.shape[-1]), color='red') axarr.plot(xhat[idx:idx+5, :, :].reshape(-1, x_.shape[-1]), color='blue', linestyle='dotted') f.set_size_inches(12, 10) f.savefig(path, dpi=100, format='png') plt.close(f) # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the rae with bn %s. seed %i." % (str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=5000, anneal=[("learningrate", 100, 0.75, 3e-5)])
def run_cvae(): seed = np.random.randint(1, 2147462579) # def sinus_seq(period, samples, length): # X = np.linspace(-np.pi*(samples/period), np.pi*(samples/period), samples) # X = np.reshape(np.sin(X), (-1, length, 1)) # X += np.random.randn(*X.shape)*0.1 # X = (X - np.min(X))/(np.max(X) - np.min(X)) # return X, np.ones((samples/length, 1)) # # X1, y1 = sinus_seq(40, 100000, 50) # X2, y2 = sinus_seq(20, 40000, 50) # # X = np.concatenate((X1, X2)).astype('float32') # y = np.concatenate((y1*0, y2*1), axis=0).astype('int') # # dim_samples, dim_sequence, dim_features = X.shape # X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) # X, y, users, stats = har.load() n_samples, step = 25, 25 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, diff=False, step=step, normalize='segments', comp_magnitude=True, simple_labels=True, common_labels=True) X, y, name, users, stats = load_data.uci_hapt() limited_labels = y < 5 y = y[limited_labels] X = X[limited_labels].astype(np.float32) users = users[limited_labels] X -= X.mean(axis=0) # Compress labels for idx, label in enumerate(np.unique(y)): if not np.equal(idx, label): y[y == label] = idx y_unique = np.unique(y) y = one_hot(y, len(y_unique)) dim_samples, dim_sequence, dim_features = X.shape num_classes = len(y_unique) # Split into train and test stratified by users X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=users) # Combine in sets train_set = (X_train, y_train) test_set = (X_test, y_test) print('Train size: ', train_set[0].shape) print('Test size: ', test_set[0].shape) n, seq, n_x = train_set[ 0].shape # Datapoints in the dataset, input features. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. # [num_filters, stride, pool] filters = [[128, 1, 2], [128, 1, 2], [128, 1, 2], [128, 1, 2]] model = CVAE(n_x=int(n_x), n_z=128, px_hid=[128], qz_hid=[128], filters=filters, seq_length=int(seq), nonlinearity=rectify, batchnorm=False, x_dist='gaussian') # Copy script to output folder copy_script(__file__, model) # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set, test_set) # Update the default function arguments. train_args['inputs']['batchsize'] = 100 train_args['inputs']['learningrate'] = 1e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs']['warmup'] = .5 def custom_evaluation(model, path): plt.clf() f, axarr = plt.subplots(nrows=len(np.unique(y)), ncols=2) z_ = np.empty((0, model.n_z)) y_ = np.empty((0, )) for idx, y_l in enumerate(np.unique(y)): act_idx = test_set[1] == y_l test_act = test_set[0][act_idx[:, 0]] z = model.f_qz(test_act, 1) z_ = np.concatenate((z_, z)) y_ = np.concatenate((y_, np.ones((len(test_act), )) * y_l)) xhat = model.f_px(z, 1) mu = model.f_mu(z, 1) var = np.exp(model.f_var(z, 1)) axarr[idx, 0].plot(test_act[:2].reshape(-1, dim_features), color='red') axarr[idx, 0].plot(xhat[:2].reshape(-1, dim_features), color='blue', linestyle='dotted') axarr[idx, 1].plot(mu[:2].reshape(-1, dim_features), label="mu") axarr[idx, 1].plot(var[:2].reshape(-1, dim_features), label="var") plt.legend() f.set_size_inches(12, 10) f.savefig(path, dpi=100, format='png') plt.close(f) # Plot PCA decomp of Z z_pca = PCA(n_components=2).fit_transform(z_) plt.clf() plt.figure() for c, i in zip(['r', 'b'], set(y_unique)): plt.scatter(z_pca[y_ == i, 0], z_pca[y_ == i, 1], c=c, alpha=0.8) plt.legend() plt.title('PCA of Z') plt.savefig(path.replace('custom_eval_plot', 'pca/z')) plt.close() # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the rae with bn %s. seed %i." % (str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000, anneal=[("learningrate", 100, 0.75, 3e-5), ("warmup", 5, 0.99, 0.1)]) image_to_movie.create(model.get_root_path() + '/training_custom_evals/', rate=3)
def main(): seed = np.random.randint(1, 2147462579) # def sinus_seq(period, samples, length): # X = np.linspace(-np.pi*(samples/period), np.pi*(samples/period), samples) # X = np.reshape(np.sin(X), (-1, length, 1)) # X += np.random.randn(*X.shape)*0.1 # # X = (X - np.min(X))/(np.max(X) - np.min(X)) # return X, np.ones((samples/length, 1)) # # X1, y1 = sinus_seq(20, 100000, 40) # X2, y2 = sinus_seq(12, 100000, 40) # X3, y3 = sinus_seq(8, 100000, 40) # # X = np.concatenate((X1, X2, X3)).astype('float32') # y = np.concatenate((y1*0, y2*1, y3*2), axis=0).astype('int')[:, 0] # # y_unique = np.unique(y) # y = one_hot(y, len(y_unique)) # num_classes = len(y_unique) # # X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.9) # X, y, users, stats = har.load() # n_samples, step = 50, 50 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=False, n_samples=n_samples, diff=False, step=step, normalize='segments', comp_magnitude=False, simple_labels=False, common_labels=False) X, y, name, users, stats = load_data.uci_hapt() limited_labels = y < 18 y = y[limited_labels] X = X[limited_labels].astype(np.float32) users = users[limited_labels] # X -= X.mean(axis=0) # Compress labels for idx, label in enumerate(np.unique(y)): if not np.equal(idx, label): y[y == label] = idx y_unique = np.unique(y) num_classes = len(y_unique) y = one_hot(y, num_classes) # Split into train and test stratified by users X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1000, stratify=users) n_samples = 1001 # Split training into labelled and unlabelled. Optionally stratified by the label X_train_labeled, X_train_unlabeled, y_train_labeled, y_train_unlabeled = \ train_test_split(X_train, y_train, train_size=n_samples, stratify=np.argmax(y_train, axis=1)) # Combine in sets train_set_labeled = (X_train_labeled, y_train_labeled) train_set_unlabeled = (X_train_unlabeled, y_train_unlabeled) test_set = (X_test, y_test) print('Train unlabelled size: ', train_set_unlabeled[0].shape) print('Train labelled size: ', train_set_labeled[0].shape) print('Test size: ', test_set[0].shape) n, n_l, n_c = train_set_unlabeled[ 0].shape # Datapoints in the dataset, input features. n_batches = n / 100 # The number of batches. bs = n / n_batches # The batchsize. # Initialize the auxiliary deep generative model. model = RSDGM(n_c=int(n_c), n_l=int(n_l), n_a=100, n_z=128, n_y=num_classes, qa_hid=[100], qz_hid=[100], qy_hid=[100], px_hid=[128], pa_hid=[100], nonlinearity=rectify, batchnorm=False, x_dist='gaussian') # Copy script to output folder copy_script(__file__, model) # Create output path for PCA plot makedirs(model.get_root_path() + '/training custom evals/pca') # Get the training functions. f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model( train_set_unlabeled, train_set_labeled, test_set) # Update the default function arguments. train_args['inputs']['batchsize_unlabeled'] = bs train_args['inputs']['batchsize_labeled'] = n_samples train_args['inputs']['beta'] = .1 train_args['inputs']['learningrate'] = 3e-4 train_args['inputs']['beta1'] = 0.9 train_args['inputs']['beta2'] = 0.999 train_args['inputs']['samples'] = 1 train_args['inputs']['warmup'] = 1.1 def custom_evaluation(model, path): # Get model output x_ = test_set[0] y_ = test_set[1] # qy = model.f_qy(x_, 1) qa = model.f_qa(x_, 1) qz = model.f_qz(x_, y_, 1) # pa = model.f_pa(qz, y_, 1) px = model.f_px(qa, qz, y_, 1) px_mu = model.f_mu(qa, qz, y_, 1) px_var = np.exp(model.f_var(qa, qz, y_, 1)) # reduce y to integers y_ = np.argmax(y_, axis=1) plt.clf() f, axarr = plt.subplots(nrows=len(y_unique), ncols=2) for idx, y_l in enumerate(y_unique): l_idx = y_ == y_l axarr[idx, 0].plot(x_[l_idx][:2].reshape(-1, n_c)) axarr[idx, 0].plot(px[l_idx][:2].reshape(-1, n_c), linestyle='dotted') axarr[idx, 1].plot(px_mu[l_idx][:2].reshape(-1, n_c), label="mu") axarr[idx, 1].plot(px_var[l_idx][:2].reshape(-1, n_c), label="var") plt.legend() f.set_size_inches(12, 8) f.savefig(path, dpi=100, format='png') plt.close(f) # Plot PCA decomp z_pca = PCA(n_components=2).fit_transform(qz) a_pca = PCA(n_components=2).fit_transform(qa) palette = itertools.cycle(sns.color_palette()) plt.clf() plt.figure() f, axarr = plt.subplots(ncols=2) for i in set(y_unique): c = next(palette) axarr[0].scatter(z_pca[y_ == i, 0], z_pca[y_ == i, 1], c=c, alpha=0.8) axarr[1].scatter(a_pca[y_ == i, 0], a_pca[y_ == i, 1], c=c, alpha=0.8, label=str(i)) plt.legend() plt.title('PCA of Z and A') f.set_size_inches(10, 6) plt.savefig(path.replace('custom_eval_plot', 'pca/z'), dpi=100, format='png') plt.close() # Define training loop. Output training evaluations every 1 epoch # and the custom evaluation method every 10 epochs. train = TrainModel(model=model, output_freq=1, pickle_f_custom_freq=10, f_custom_eval=custom_evaluation) train.add_initial_training_notes("Training the rae with bn %s. seed %i." % (str(model.batchnorm), seed)) train.train_model(f_train, train_args, f_test, test_args, f_validate, validate_args, n_train_batches=n_batches, n_epochs=1000, anneal=[("learningrate", 100, 0.75, 3e-5), ("warmup", 1, 0.99, 0.1)])
def main(): n_samples, step = 200, 200 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=True, n_samples=n_samples, step=step, normalize=False, comp_magnitude=False) conf = ModelConfiguration() conf.load_datasets([load_data.uci_hapt], label_limit=100) user_idx = -1 user = None # 'UCI HAPT10' if user is not None: train_idx = conf.users != user test_idx = conf.users == user conf.cv = ((train_idx, test_idx), ) print('Testing user: %s' % user) else: # Cross validate on users # conf.cv = LeavePLabelOut(conf.users, p=1) # Divide into K folds balanced on labels # conf.cv = StratifiedKFold(np.argmax(conf.y, axis=1), n_folds=10) # And shuffle conf.cv = StratifiedShuffleSplit(np.argmax(conf.y, axis=1), n_iter=1, test_size=0.3) for train_index, test_index in conf.cv: conf.user = user model = ResNet(n_in=(n_samples, conf.n_features), n_filters=[32, 64, 128, 256], pool_sizes=[2, 2, 2, 2], n_hidden=[512], conv_dropout=0.3, dropout=0.5, n_out=conf.n_classes, trans_func=leaky_rectify, out_func=softmax, batch_norm=True, stats=conf.stats) if len(conf.cv) > 1: user_idx += 1 if len(conf.cv) == len(conf.user_names): conf.user = conf.user_names[user_idx] else: conf.user = conf.name + ' K_%d' % user_idx # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, conf.d, conf.user) paths.path_exists(model.root_path) rmdir(root_path) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=50, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False conf.run(train_index, test_index, lr=0.003, n_epochs=500, model=model, train=train, load_data=load_data)
def main(): n_samples, step = 100, 50 load_data = LoadHAR(add_pitch=False, add_roll=False, add_filter=True, n_samples=n_samples, step=step, normalize=True) conf = ModelConfiguration() conf.load_datasets( [load_data.uci_hapt], label_limit=18) # , load_data.uci_mhealth, load_data.idash user_idx = -1 user = None # Create a time-string for our cv run if user is not None: train_idx = conf.users != user test_idx = conf.users == user conf.cv = ((train_idx, test_idx), ) else: conf.cv = LeaveOneLabelOut(conf.users) for train_index, test_index in conf.cv: conf.user = user model = CNN(n_in=(n_samples + 2, conf.n_features), n_filters=[64, 64, 64, 64], filter_sizes=[5, 5, 3, 3], pool_sizes=[2, 2, 2, 2], conv_dropout=0.5, n_hidden=[128], dense_dropout=0.5, n_out=conf.n_classes, ccf=False, trans_func=rectify, out_func=softmax, batch_norm=True, input_noise=0.2, stats=2) if len(conf.cv) > 1: user_idx += 1 conf.user = conf.user_names[user_idx] # Generate root path and edit root_path = model.get_root_path() model.root_path = "%s_cv_%s_%s" % (root_path, conf.d, conf.user) paths.path_exists(model.root_path) rmdir(root_path) train = TrainModel(model=model, anneal_lr=0.75, anneal_lr_freq=100, output_freq=1, pickle_f_custom_freq=100, f_custom_eval=None) train.pickle = False conf.run(train_index, test_index, lr=0.003, n_epochs=300, model=model, train=train, load_data=load_data)