def train_generative_adversarial_manifold_flow_alternating( args, dataset, model, simulator): """ MFMF-OTA training """ assert not args.specified gen_trainer = GenerativeTrainer(model) if simulator.parameter_dim( ) is None else ConditionalGenerativeTrainer(model) likelihood_trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) metatrainer = AlternatingTrainer(model, gen_trainer, likelihood_trainer) meta_kwargs = { "dataset": dataset, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "validation_split": args.validationsplit } if args.weightdecay is not None: meta_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } phase1_kwargs = {"clip_gradient": args.clip} phase2_kwargs = { "forward_kwargs": { "mode": "mf-fixed-manifold" }, "clip_gradient": args.clip } phase1_parameters = model.parameters() phase2_parameters = model.inner_transform.parameters() logger.info( "Starting training GAMF, alternating between Sinkhorn divergence and log likelihood" ) learning_curves_ = metatrainer.train( loss_functions=[losses.make_sinkhorn_divergence(), losses.nll], loss_function_trainers=[0, 1], loss_labels=["GED", "NLL"], loss_weights=[args.sinkhornfactor, args.nllfactor], batch_sizes=[args.genbatchsize, args.batchsize], epochs=args.epochs // 2, parameters=[phase1_parameters, phase2_parameters], callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ], trainer_kwargs=[phase1_kwargs, phase2_kwargs], subsets=args.subsets, subset_callbacks=[callbacks.print_mf_weight_statistics()] if args.debug else None, **meta_kwargs, ) learning_curves = np.vstack(learning_curves_).T return learning_curves
def train_manifold_flow_alternating(args, dataset, model, simulator): """ MFMF-A training """ assert not args.specified trainer1 = ForwardTrainer(model) if simulator.parameter_dim( ) is None else ConditionalForwardTrainer(model) trainer2 = ForwardTrainer(model) if simulator.parameter_dim( ) is None else ConditionalForwardTrainer( model) if args.scandal is None else SCANDALForwardTrainer(model) metatrainer = AlternatingTrainer(model, trainer1, trainer2) meta_kwargs = { "dataset": dataset, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "validation_split": args.validationsplit } if args.weightdecay is not None: meta_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } _, scandal_loss, scandal_label, scandal_weight = make_training_kwargs( args, dataset) phase1_kwargs = { "forward_kwargs": { "mode": "projection" }, "clip_gradient": args.clip } phase2_kwargs = { "forward_kwargs": { "mode": "mf-fixed-manifold" }, "clip_gradient": args.clip } phase1_parameters = list(model.outer_transform.parameters()) + list( model.encoder.parameters( )) if args.algorithm == "emf" else model.outer_transform.parameters() phase2_parameters = list(model.inner_transform.parameters()) logger.info( "Starting training MF, alternating between reconstruction error and log likelihood" ) learning_curves_ = metatrainer.train( loss_functions=[ losses.smooth_l1_loss if args.l1 else losses.mse, losses.nll ] + scandal_loss, loss_function_trainers=[0, 1] + [1] if args.scandal is not None else [], loss_labels=["L1" if args.l1 else "MSE", "NLL"] + scandal_label, loss_weights=[ args.msefactor, args.nllfactor * nat_to_bit_per_dim(args.modellatentdim) ] + scandal_weight, epochs=args.epochs // 2, subsets=args.subsets, batch_sizes=[args.batchsize, args.batchsize], parameters=[phase1_parameters, phase2_parameters], callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)) ], trainer_kwargs=[phase1_kwargs, phase2_kwargs], **meta_kwargs, ) learning_curves = np.vstack(learning_curves_).T return learning_curves
def train_manifold_flow_alternating(args, dataset, model, simulator): """ MFMF-A training """ assert not args.specified trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) metatrainer = AlternatingTrainer(model, trainer, trainer) meta_kwargs = { "dataset": dataset, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR } if args.weightdecay is not None: meta_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } phase1_kwargs = { "forward_kwargs": { "mode": "projection" }, "clip_gradient": args.clip, "validation_split": args.validationsplit } phase2_kwargs = { "forward_kwargs": { "mode": "mf-fixed-manifold" }, "clip_gradient": args.clip, "validation_split": args.validationsplit } phase1_parameters = (list(model.outer_transform.parameters()) + list(model.encoder.parameters()) if args.algorithm == "emf" else model.outer_transform.parameters()) phase2_parameters = model.inner_transform.parameters() logger.info( "Starting training MF, alternating between reconstruction error and log likelihood" ) learning_curves_ = metatrainer.train( loss_functions=[losses.mse, losses.nll], loss_function_trainers=[0, 1], loss_labels=["MSE", "NLL"], loss_weights=[args.msefactor, args.nllfactor], epochs=args.epochs // 2, subsets=args.subsets, batch_sizes=[args.batchsize, args.batchsize], parameters=[phase1_parameters, phase2_parameters], callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ], trainer_kwargs=[phase1_kwargs, phase2_kwargs], **meta_kwargs, ) learning_curves = np.vstack(learning_curves_).T return learning_curves