Esempio n. 1
0
def gen_init_trajs(problemset, robot, n_steps, start_joints, end_joints):
    waypoint_step = (n_steps - 1) // 2
    joint_waypoints = [(np.asarray(start_joints) + np.asarray(end_joints)) / 2]
    if args.multi_init:
        if args.use_random_inits:
            print 'using random initializations'
            joint_waypoints.extend(
                sample_base_positions(robot, num=5, tucked=True))
        # if the problem file has waypoints, just use those
        else:
            if problemset["group_name"] in [
                    "right_arm", "left_arm", "whole_body"
            ]:
                joint_waypoints.extend(get_postures(problemset["group_name"]))
    trajs = []
    for i, waypoint in enumerate(joint_waypoints):
        if i == 0:
            inittraj = mu.linspace2d(start_joints, end_joints, n_steps)
        else:
            inittraj = np.empty((n_steps, robot.GetActiveDOF()))
            inittraj[:waypoint_step + 1] = mu.linspace2d(
                start_joints, waypoint, waypoint_step + 1)
            inittraj[waypoint_step:] = mu.linspace2d(waypoint, end_joints,
                                                     n_steps - waypoint_step)
        trajs.append(inittraj)
    return trajs
def interpolate_waypoint(start, waypoint, end, num_steps):
    waypoint_step = (num_steps - 1) // 2
    traj = np.empty((num_steps, 7))
    traj[:waypoint_step + 1] = mu.linspace2d(start, waypoint,
                                             waypoint_step + 1)
    traj[waypoint_step:] = mu.linspace2d(waypoint, end,
                                         num_steps - waypoint_step)
    return traj
 def predict_with_waypoint(self,
                           init_joint,
                           target_joint,
                           waypoint=None,
                           waypoint_step=0):
     inittraj = np.empty((self.n_steps, self.dof))
     inittraj[:waypoint_step + 1] = mu.linspace2d(init_joint, waypoint,
                                                  waypoint_step + 1)
     inittraj[waypoint_step:] = mu.linspace2d(waypoint, target_joint,
                                              self.n_steps - waypoint_step)
     return inittraj, np.array([[0]])
Esempio n. 4
0
def move_arm_straight_request(manip, n_steps, link_name, joints_start, joints_end, xyz_start, quat_start, xyz_end, quat_end):
    '''
    WARNING: start/end joints, xyz, and quats must all agree, otherwise the optimization problem will be infeasible!
    '''
    init_joints = mu.linspace2d(joints_start, joints_end, n_steps)
    request = {
        'basic_info': {
          'n_steps': n_steps,
          'manip': manip.GetName(),
          'start_fixed': False, # take care of this with the init_joints constraint instead
        },
        'costs': [
            { 'type': 'joint_vel', 'params': { 'coeffs': [1] } },
            { 'type': 'collision', 'params': { 'coeffs': [1], 'dist_pen': [0.025] } },
        ],
        'constraints': [
            {
                'type' : 'joint',
                'name' : 'init_joints',
                'params' : { 'vals': list(joints_start), 'timestep': 0 },
            },
            {
                'type' : 'joint',
                'name' : 'final_joints',
                'params' : { 'vals': list(joints_end) },
            },
        ],
        'init_info': {
            'type': 'given_traj',
            'data': [j.tolist() for j in init_joints],
        },
    }

    # add costs for deviation from a straight line in cartesian space
    lin_xyzs = mu.linspace2d(xyz_start, xyz_end, n_steps)
    lin_quats = [rave.quatSlerp(quat_start, quat_end, t) for t in np.linspace(0, 1, n_steps)]
    for i in range(1, n_steps-1):
        request['costs'].append({
            'type': 'pose',
            'params': {
                'xyz': list(lin_xyzs[i]),
                'wxyz': list(lin_quats[i]),
                'pos_coeffs': [1, 1, 1],
                'rot_coeffs': [1, 1, 1],
                'link': link_name,
                'timestep': i,
            }
        })

    return request
Esempio n. 5
0
def trajopt_multi_plan(env,
                       robot,
                       goal_config,
                       num_inits=10,
                       num_steps=10,
                       warn_if_unchanged=False,
                       inits=None,
                       **args):
    start_joints = robot.GetActiveDOFValues()
    linear_init = mu.linspace2d(start_joints, goal_config, num_steps)
    results = []
    default_res = trajopt_simple_plan(env,
                                      robot,
                                      goal_config,
                                      num_steps=num_steps,
                                      **args)
    results.append(default_res)
    for i in range(num_inits - 1):
        if inits is not None:
            modified_init = inits[i]
        else:
            modified_init = np.mod(linear_init + smooth_perturb(), 2 * np.pi)
        res = trajopt_simple_plan(env,
                                  robot,
                                  goal_config,
                                  init=modified_init,
                                  num_steps=num_steps,
                                  **args)
        if warn_if_unchanged and np.allclose(modified_init, res.GetTraj()):
            print('Warning: unchanged init')
        if not np.allclose(default_res.GetTraj(), res.GetTraj()):
            results.append(res)
    return results
Esempio n. 6
0
def trajopt_simple_plan(env,
                        robot,
                        goal_config,
                        num_steps=10,
                        custom_costs={},
                        init=None,
                        custom_traj_costs={},
                        request_callbacks=[],
                        joint_vel_coeff=1.):
    start_joints = robot.GetActiveDOFValues()
    if init is None:
        init = mu.linspace2d(start_joints, goal_config, num_steps)
    request = {
        'basic_info': {
            'n_steps': num_steps,
            'manip': robot.arm.GetName(),
            'start_fixed': True
        },
        'costs': [{
            'type': 'collision',
            'params': {
                'coeffs': [20],
                'dist_pen': [0.025]
            }
        }, {
            'type': 'joint_vel',
            'params': {
                'coeffs': [joint_vel_coeff]
            }
        }],
        'constraints': [{
            'type': 'joint',
            'params': {
                'vals': goal_config.tolist()
            }
        }],
        'init_info': {
            'type': 'given_traj',
            'data': init.tolist()
        }
    }
    [callback(request) for callback in request_callbacks]
    s = json.dumps(request)
    prob = trajoptpy.ConstructProblem(s, env)
    for cost_name in custom_costs:
        cost_fn = custom_costs[cost_name]
        prob.AddCost(cost_fn,
                     [(t, j) for t in range(num_steps) for j in range(7)],
                     '{:s}{:d}'.format(cost_name, t))
    for cost_name in custom_traj_costs:
        cost_fn = custom_traj_costs[cost_name]
        if isinstance(cost_fn, tuple):
            prob.AddErrorCost(cost_fn[0], cost_fn[1],
                              [(t, j) for t in range(num_steps)
                               for j in range(7)], 'SQUARED', cost_name)
        else:
            prob.AddCost(cost_fn, [(t, j) for t in range(num_steps)
                                   for j in range(7)], cost_name)
    result = trajoptpy.OptimizeProblem(prob)
    return result
def random_init_maker(given_init, one_wp=False):
    start = given_init[0]
    end = given_init[-1]
    if one_wp:
        changed_idx = np.random.choice(range(3, 7))
        original = given_init[changed_idx]
        new_pt = np.random.multivariate_normal(original, .05 * np.eye(7))
        modified_init = np.concatenate([
            mu.linspace2d(given_init[0], new_pt, changed_idx + 1),
            mu.linspace2d(new_pt, given_init[-1], 10 - changed_idx)[1:]
        ],
                                       axis=0)
    else:
        modified_init = given_init.copy()
        modified_init[1:-1] = np.random.multivariate_normal(
            given_init[1:-1].reshape(-1),
            np.linalg.norm(start - end) * 0.0025 * np.eye(56)).reshape(8, -1)
    return modified_init
Esempio n. 8
0
def main():
        
    ### Parameters ###
    ENV_FILE = "../../trajopt/data/pr2_table.env.xml"
    MANIP_NAME = "rightarm"
    N_STEPS = 10
    LINK_NAME = "r_gripper_tool_frame"
    INTERACTIVE = True
    #joints_start_end = np.array([
    #    [-0.95, -0.38918253, -2.43888696, -1.23400121, -0.87433154, -0.97616443, -2.10997203],
    #    [-0.4, -0.4087081, -3.77121706, -1.2273375, 0.69885101, -0.8992004, 3.13313843]
    #])

    #joints_start_end = np.array([[0.34066373,   -0.49439586,   -3.3   ,       -1.31059503 ,  -1.28229698,   -0.15682819, -116.19626995],
    #    [   0.5162424 ,   -0.42037121 ,  -3.7     ,     -1.30277208  , 1.31120586,   -0.16411924 ,-118.57637204]])

    #joints_start_end = np.array([[  -1.83204054  , -0.33201855 ,  -1.01105089 ,  -1.43693186  , -1.099908,   -2.00040616, -116.17133393],
   #[  -0.38176851  ,  0.17886005  , -1.4    ,      -1.89752658 ,  -1.93285873,   -1.60546868, -114.70809047]])

    joints_start_end = np.array([[0.33487707,   -0.50480484 ,  -3.3    ,      -1.33546928  , -1.37194549 ,  -0.14645853 ,-116.11672039],  [  4.71340480e-01 , -4.56593341e-01 , -3.60000000e+00 , -1.33176173e+00,
   1.21859723e+00 , -9.98780266e-02,  -1.18561732e+02]])


    ##################
    joints_start_end[:,2] = np.unwrap(joints_start_end[:,2])
    joints_start_end[:,4] = np.unwrap(joints_start_end[:,4])
    joints_start_end[:,6] = np.unwrap(joints_start_end[:,6])
    joints_start = joints_start_end[0,:]
    joints_end = joints_start_end[1,:]
    
    
    ### Env setup ####
    env = rave.RaveGetEnvironment(1)
    if env is None:
        env = rave.Environment()
        env.StopSimulation()
        atexit.register(rave.RaveDestroy)
        env.Load(ENV_FILE)
    robot = env.GetRobots()[0]
    manip = robot.GetManipulator(MANIP_NAME)
    robot.SetDOFValues(joints_start, manip.GetArmIndices())
    ##################

    result_traj = move_arm_straight(env, manip, N_STEPS, LINK_NAME, joints_start, joints_end, interactive=INTERACTIVE)

    print 'Showing original straight-line trajectory'
    env.SetViewer('qtcoin')
    env.UpdatePublishedBodies()
    import time
    time.sleep(2)
    play_traj(mu.linspace2d(joints_start, joints_end, N_STEPS), env, manip)
    raw_input('press enter to continue')
    print 'Showing optimized trajectory'
    play_traj(result_traj, env, manip)
    raw_input('press enter to continue')
def gen_init_trajs(problemset, robot, n_steps, start_joints, end_joints):
    waypoint_step = (n_steps - 1)// 2
    joint_waypoints = [(np.asarray(start_joints) + np.asarray(end_joints))/2]
    if args.multi_init:
        if args.use_random_inits:
            print 'using random initializations'
            joint_waypoints.extend(sample_base_positions(robot, num=5, tucked=True))
        # if the problem file has waypoints, just use those
        else:
            if problemset["group_name"] in ["right_arm", "left_arm", "whole_body"]:
                joint_waypoints.extend(get_postures(problemset["group_name"]))
    trajs = []
    for i, waypoint in enumerate(joint_waypoints):
        if i == 0:
            inittraj = mu.linspace2d(start_joints, end_joints, n_steps)
        else:
            inittraj = np.empty((n_steps, robot.GetActiveDOF()))
            inittraj[:waypoint_step+1] = mu.linspace2d(start_joints, waypoint, waypoint_step+1)
            inittraj[waypoint_step:] = mu.linspace2d(waypoint, end_joints, n_steps - waypoint_step)
        trajs.append(inittraj)
    return trajs
Esempio n. 10
0
def generate_trajs():
    use_planning = (request.form['generate_option'] == 'planning')
    temp_to_label = []
    with env:
        sg_pair_idcs = np.random.choice(range(len(c.start_goal_pairs)),
                                        size=4,
                                        replace=False)
        for idx in sg_pair_idcs:
            start, goal = c.start_goal_pairs[idx]
            robot.SetActiveDOFValues(start)
            if not use_planning:
                given = mu.linspace2d(start, goal, 10)
            else:
                given = planners.trajopt_simple_plan(
                    env,
                    robot,
                    goal,
                    custom_traj_costs=custom_cost,
                    joint_vel_coeff=session_vars['joint_vel_coeff']).GetTraj()
            wps = [given]
            for i in range(3):
                delta = utils.smooth_perturb(.1)
                wps.append(given + delta)
            for xA, xB in itertools.combinations(wps, 2):
                if not np.allclose(xA[:, :7], xB[:, :7]):
                    trajA = utils.waypoints_to_traj(
                        display_env,
                        display_robot1,
                        xA,
                        session_vars['speed'],
                        None,
                        use_ee_dist=session_vars['use_ee_dist'])
                    trajB = utils.waypoints_to_traj(
                        display_env,
                        display_robot2,
                        xB,
                        session_vars['speed'],
                        None,
                        use_ee_dist=session_vars['use_ee_dist'])
                    temp_to_label.append((xA, trajA, xB, trajB))
    random.shuffle(temp_to_label)
    to_label.extend(temp_to_label)
    starting_dofs = to_label[0][1].GetWaypoint(0)[:7]
    display_robot1.SetActiveDOFValues(starting_dofs)
    display_robot2.SetActiveDOFValues(starting_dofs)
    return redirect(url_for('index'))
Esempio n. 11
0
def plan(robot, manip, end_joints, end_pose=None):

    arm_inds = robot.GetManipulator(manip).GetArmIndices()
    start_joints = robot.GetDOFValues(arm_inds)

    n_steps = 11
    coll_coeff = 10
    dist_pen = .05

    waypoint_step = (n_steps - 1) // 2
    joint_waypoints = [(np.asarray(start_joints) + np.asarray(end_joints)) / 2]
    joint_waypoints.extend(get_postures(manip))

    success = False
    t_start = time()
    t_verify = 0
    t_opt = 0

    for (i_init, waypoint) in enumerate(joint_waypoints):
        d = {
            "basic_info": {
                "n_steps": n_steps,
                "manip": manip,
                "start_fixed": True
            },
            "costs": [{
                "type": "joint_vel",
                "params": {
                    "coeffs": [1]
                }
            }, {
                "type": "collision",
                "params": {
                    "coeffs": [coll_coeff],
                    "dist_pen": [dist_pen]
                }
            }, {
                "type": "collision",
                "params": {
                    "continuous": False,
                    "coeffs": [coll_coeff],
                    "dist_pen": [dist_pen]
                }
            }],
            "constraints": [{
                "type": "joint",
                "params": {
                    "vals": end_joints.tolist()
                }
            } if end_pose is None else {
                "type": "pose",
                "params": {
                    "xyz": end_pose[4:7].tolist(),
                    "wxyz": end_pose[0:4].tolist(),
                    "link": "%s_gripper_tool_frame" % manip[0]
                }
            }],
            "init_info": {
                "type": "given_traj"
            }
        }

        if args.multi_init:
            # print "trying with midpoint", waypoint
            inittraj = np.empty((n_steps, 7))
            inittraj[:waypoint_step + 1] = mu.linspace2d(
                start_joints, waypoint, waypoint_step + 1)
            inittraj[waypoint_step:] = mu.linspace2d(waypoint, end_joints,
                                                     n_steps - waypoint_step)
        else:
            inittraj = mu.linspace2d(start_joints, end_joints, n_steps)
        d["init_info"]["data"] = [row.tolist() for row in inittraj]

        s = json.dumps(d)
        prob = trajoptpy.ConstructProblem(s, env)

        t_start_opt = time()
        result = trajoptpy.OptimizeProblem(prob)
        t_opt += time() - t_start_opt

        traj = result.GetTraj()

        prob.SetRobotActiveDOFs()
        t_start_verify = time()
        is_safe = traj_is_safe(traj, robot)
        t_verify += time() - t_start_verify

        if not is_safe:
            print "optimal trajectory has a collision. trying a new initialization"
        else:
            print "planning successful after %s initialization" % (i_init + 1)
            success = True
            break
    t_total = time() - t_start
    return PlanResult(success, t_total, t_opt, t_verify)
 def predict(self, init_joint, target_joint):
     inittraj = np.empty((self.n_steps, self.dof))
     inittraj = mu.linspace2d(init_joint, target_joint, self.n_steps)
     return inittraj, np.array([[0]])
Esempio n. 13
0
def main():

    ### Parameters ###
    ENV_FILE = "../../trajopt/data/pr2_table.env.xml"
    MANIP_NAME = "rightarm"
    N_STEPS = 10
    LINK_NAME = "r_gripper_tool_frame"
    INTERACTIVE = True
    #joints_start_end = np.array([
    #    [-0.95, -0.38918253, -2.43888696, -1.23400121, -0.87433154, -0.97616443, -2.10997203],
    #    [-0.4, -0.4087081, -3.77121706, -1.2273375, 0.69885101, -0.8992004, 3.13313843]
    #])

    #joints_start_end = np.array([[0.34066373,   -0.49439586,   -3.3   ,       -1.31059503 ,  -1.28229698,   -0.15682819, -116.19626995],
    #    [   0.5162424 ,   -0.42037121 ,  -3.7     ,     -1.30277208  , 1.31120586,   -0.16411924 ,-118.57637204]])

    #joints_start_end = np.array([[  -1.83204054  , -0.33201855 ,  -1.01105089 ,  -1.43693186  , -1.099908,   -2.00040616, -116.17133393],
    #[  -0.38176851  ,  0.17886005  , -1.4    ,      -1.89752658 ,  -1.93285873,   -1.60546868, -114.70809047]])

    joints_start_end = np.array([[
        0.33487707, -0.50480484, -3.3, -1.33546928, -1.37194549, -0.14645853,
        -116.11672039
    ],
                                 [
                                     4.71340480e-01, -4.56593341e-01,
                                     -3.60000000e+00, -1.33176173e+00,
                                     1.21859723e+00, -9.98780266e-02,
                                     -1.18561732e+02
                                 ]])

    ##################
    joints_start_end[:, 2] = np.unwrap(joints_start_end[:, 2])
    joints_start_end[:, 4] = np.unwrap(joints_start_end[:, 4])
    joints_start_end[:, 6] = np.unwrap(joints_start_end[:, 6])
    joints_start = joints_start_end[0, :]
    joints_end = joints_start_end[1, :]

    ### Env setup ####
    env = rave.RaveGetEnvironment(1)
    if env is None:
        env = rave.Environment()
        env.StopSimulation()
        atexit.register(rave.RaveDestroy)
        env.Load(ENV_FILE)
    robot = env.GetRobots()[0]
    manip = robot.GetManipulator(MANIP_NAME)
    robot.SetDOFValues(joints_start, manip.GetArmIndices())
    ##################

    result_traj = move_arm_straight(env,
                                    manip,
                                    N_STEPS,
                                    LINK_NAME,
                                    joints_start,
                                    joints_end,
                                    interactive=INTERACTIVE)

    print 'Showing original straight-line trajectory'
    env.SetViewer('qtcoin')
    env.UpdatePublishedBodies()
    import time
    time.sleep(2)
    play_traj(mu.linspace2d(joints_start, joints_end, N_STEPS), env, manip)
    raw_input('press enter to continue')
    print 'Showing optimized trajectory'
    play_traj(result_traj, env, manip)
    raw_input('press enter to continue')
Esempio n. 14
0
def move_arm_straight_request(manip, n_steps, link_name, joints_start,
                              joints_end, xyz_start, quat_start, xyz_end,
                              quat_end):
    '''
    WARNING: start/end joints, xyz, and quats must all agree, otherwise the optimization problem will be infeasible!
    '''
    init_joints = mu.linspace2d(joints_start, joints_end, n_steps)
    request = {
        'basic_info': {
            'n_steps': n_steps,
            'manip': manip.GetName(),
            'start_fixed':
            False,  # take care of this with the init_joints constraint instead
        },
        'costs': [
            {
                'type': 'joint_vel',
                'params': {
                    'coeffs': [1]
                }
            },
            {
                'type': 'collision',
                'params': {
                    'coeffs': [1],
                    'dist_pen': [0.025]
                }
            },
        ],
        'constraints': [
            {
                'type': 'joint',
                'name': 'init_joints',
                'params': {
                    'vals': list(joints_start),
                    'timestep': 0
                },
            },
            {
                'type': 'joint',
                'name': 'final_joints',
                'params': {
                    'vals': list(joints_end)
                },
            },
        ],
        'init_info': {
            'type': 'given_traj',
            'data': [j.tolist() for j in init_joints],
        },
    }

    # add costs for deviation from a straight line in cartesian space
    lin_xyzs = mu.linspace2d(xyz_start, xyz_end, n_steps)
    lin_quats = [
        rave.quatSlerp(quat_start, quat_end, t)
        for t in np.linspace(0, 1, n_steps)
    ]
    for i in range(1, n_steps - 1):
        request['costs'].append({
            'type': 'pose',
            'params': {
                'xyz': list(lin_xyzs[i]),
                'wxyz': list(lin_quats[i]),
                'pos_coeffs': [1, 1, 1],
                'rot_coeffs': [1, 1, 1],
                'link': link_name,
                'timestep': i,
            }
        })

    return request
Esempio n. 15
0
def plan(robot, manip, end_joints, end_pose = None):
    
    arm_inds = robot.GetManipulator(manip).GetArmIndices()
    start_joints = robot.GetDOFValues(arm_inds)

    n_steps = 11
    coll_coeff = 10
    dist_pen = .05
    
    waypoint_step = (n_steps - 1)// 2
    joint_waypoints = [(np.asarray(start_joints) + np.asarray(end_joints))/2]
    joint_waypoints.extend(get_postures(manip))
    
    success = False
    t_start = time()
    t_verify = 0
    t_opt = 0
    
    for (i_init,waypoint) in enumerate(joint_waypoints):
        d = {
            "basic_info" : {
                "n_steps" : n_steps,
                "manip" : manip,
                "start_fixed" : True
            },
            "costs" : [
            {
                "type" : "joint_vel",
                "params": {"coeffs" : [1]}
            },            
            {
                "type" : "collision",
                "params" : {"coeffs" : [coll_coeff],"dist_pen" : [dist_pen]}
            },
            {
                "type" : "collision",
                "params" : {"continuous": False, "coeffs" : [coll_coeff],"dist_pen" : [dist_pen]}
            }
            ],
            "constraints" : [
                {"type" : "joint", "params" : {"vals" : end_joints.tolist()}} if end_pose is None else
                {"type" : "pose", "params" : {"xyz" : end_pose[4:7].tolist(), "wxyz" : end_pose[0:4].tolist(), "link":"%s_gripper_tool_frame"%manip[0]}}
            ],
            "init_info" : {
                "type" : "given_traj"
            }
        }
        
        if args.multi_init:        
            # print "trying with midpoint", waypoint
            inittraj = np.empty((n_steps, 7))
            inittraj[:waypoint_step+1] = mu.linspace2d(start_joints, waypoint, waypoint_step+1)
            inittraj[waypoint_step:] = mu.linspace2d(waypoint, end_joints, n_steps - waypoint_step)
        else:
            inittraj = mu.linspace2d(start_joints, end_joints, n_steps)                            
        d["init_info"]["data"] = [row.tolist() for row in inittraj]
                        
        s = json.dumps(d)
        prob = trajoptpy.ConstructProblem(s, env)
        
        t_start_opt = time()
        result = trajoptpy.OptimizeProblem(prob)
        t_opt += time() - t_start_opt
                
        traj = result.GetTraj()
        
        prob.SetRobotActiveDOFs()
        t_start_verify = time()
        is_safe = traj_is_safe(traj, robot)
        t_verify += time() - t_start_verify
        
        if not is_safe:                       
            print "optimal trajectory has a collision. trying a new initialization"
        else:
            print "planning successful after %s initialization"%(i_init+1)
            success = True
            break
    t_total = time() - t_start
    return PlanResult(success, t_total, t_opt, t_verify)        
def callback(getreq):
    assert isinstance(getreq, ms.GetMotionPlanRequest)
    req = getreq.motion_plan_request   
    getresp = ms.GetMotionPlanResponse()
    resp = getresp.motion_plan_response
    
    manip = GROUPMAP[req.group_name]
    
    update_rave_from_ros(robot, req.start_state.joint_state.position, req.start_state.joint_state.name)
    base_pose = req.start_state.multi_dof_joint_state.poses[0]
    base_q = base_pose.orientation
    base_p = base_pose.position
    t = rave.matrixFromPose([base_q.w, base_q.x, base_q.y, base_q.z, base_p.x, base_p.y, base_p.z])
    robot.SetTransform(t)
    start_joints = robot.GetDOFValues(robot.GetManipulator(manip).GetArmIndices())
    
    n_steps = 9
    coll_coeff = 10
    dist_pen = .04
    
    inds = robot.GetManipulator(manip).GetArmJoints()
    alljoints = robot.GetJoints()
    names = arm_joint_names = [alljoints[i].GetName() for i in inds]
        

    for goal_cnt in req.goal_constraints:
        if len(goal_cnt.joint_constraints) > 0:
            assert len(goal_cnt.joint_constraints)==7
            end_joints = np.zeros(7)
            for i in xrange(7):
                jc = goal_cnt.joint_constraints[i]
                dof_idx = arm_joint_names.index(jc.joint_name)
                end_joints[dof_idx] = jc.position

    waypoint_step = (n_steps - 1)// 2
    joint_waypoints = [(np.asarray(start_joints) + np.asarray(end_joints))/2]
    if args.multi_init:
        leftright = req.group_name.split("_")[0]
        joint_waypoints.extend(get_postures(leftright))
    
    success = False
    for waypoint in joint_waypoints:
        robot.SetDOFValues(start_joints, inds)
        d = {
            "basic_info" : {
                "n_steps" : n_steps,
                "manip" : manip,
                "start_fixed" : True
            },
            "costs" : [
            {
                "type" : "joint_vel",
                "params": {"coeffs" : [1]}
            },            
            {
                "type" : "continuous_collision",
                "params" : {"coeffs" : [coll_coeff],"dist_pen" : [dist_pen]}
            }
            ],
            "constraints" : [],
            "init_info" : {
                "type" : "given_traj"
            }
        }
        
        
        d["constraints"].append({
            "type" : "joint",
            "name" : "joint", 
            "params" : {
                "vals" : end_joints.tolist()
            }                
        })
        
        if args.multi_init:        
            inittraj = np.empty((n_steps, 7))
            inittraj[:waypoint_step+1] = mu.linspace2d(start_joints, waypoint, waypoint_step+1)
            inittraj[waypoint_step:] = mu.linspace2d(waypoint, end_joints, n_steps - waypoint_step)
        else:
            inittraj = mu.linspace2d(start_joints, end_joints, n_steps)
            
        print "this",inittraj
        print "other",mu.linspace2d(start_joints, end_joints, n_steps)
                
        d["init_info"]["data"] = [row.tolist() for row in inittraj]
    
                
        if len(goal_cnt.position_constraints) > 0:
            raise NotImplementedError
                
        
        s = json.dumps(d)
        t_start = time()
        prob = trajoptpy.ConstructProblem(s, env)
        result = trajoptpy.OptimizeProblem(prob)
        planning_duration_seconds = time() - t_start
        
        traj = result.GetTraj()
        
        if check_traj(traj, robot.GetManipulator(manip)):                       
            print "aw, there's a collision"
        else:
            print "no collisions"
            success = True
            break
    if not success:
        resp.error_code.val = FAILURE
        return resp

    resp.trajectory.joint_trajectory.joint_names = names
    for row in traj:
        jtp = tm.JointTrajectoryPoint()
        jtp.positions = row.tolist()
        jtp.time_from_start = rospy.Duration(0)
        resp.trajectory.joint_trajectory.points.append(jtp)
        
    mdjt = resp.trajectory.multi_dof_joint_trajectory
    mdjt.joint_names =  ['world_joint']
    mdjt.frame_ids = ['odom_combined']
    mdjt.child_frame_ids = ['base_footprint']
    mdjt.header = req.start_state.joint_state.header
    pose = gm.Pose()
    pose.orientation.w = 1
    for _ in xrange(len(resp.trajectory.joint_trajectory.points)): 
        jtp = mm.MultiDOFJointTrajectoryPoint()
        jtp.poses.append(pose)
    #for i in xrange(len(mdjs.joint_names)):
        #if mdjs.joint_names[i] == "world_joint":
            #world_joint_pose = mdjs.poses[i]
            #world_joint_frame_id = mdjs.frame_ids[i]
            #world_joint_child_frame_id = mdjs.child_frame_ids[i]
    #print "world_joint_frame_id", world_joint_frame_id
    #print "world_joint_child_frame_id", world_joint_child_frame_id

    #mdjt = resp.trajectory.multi_dof_joint_trajectory
    #mdjt.header.frame_id = req.start_state.joint_state.header.frame_id
    #mdjt.joint_names.append("world_joint")

    resp.error_code.val = SUCCESS
    resp.planning_time = rospy.Duration(planning_duration_seconds)
    resp.trajectory.joint_trajectory.header = req.start_state.joint_state.header
    resp.group_name = req.group_name
    resp.trajectory_start.joint_state = req.start_state.joint_state
    
    #resp.trajectory.multi_dof_joint_trajectory
    #resp.trajectory.multi_dof_joint_trajectory.header = req.start_state.joint_state.header
    
    getresp.motion_plan_response = resp
    return getresp
def main(args):
    exp_name = args.exp_name

    traj_counter = 0
    # Directory setup
    vid_dir = os.path.join('web', 'vids', exp_name)
    if os.path.exists(vid_dir):
        print('Video directory already exists!')
        traj_counter = len(os.listdir(vid_dir))
    else:
        os.makedirs(vid_dir)

    # Queue to send child process commands.
    task_queue = multiprocessing.Queue()
    # Queue for receiving trajs generated by child process.
    traj_queue = multiprocessing.Queue()
    p = multiprocessing.Process(target=comms_proc,
                                args=[exp_name, task_queue, traj_queue])
    p.start()

    client = connect('style_experiment')

    planned_wps = {idcs: None for idcs in constants.sg_train_idcs}
    # Training queue of *labeled* comparisons
    labeled_comparison_queue = ComparisonQueue(exp_name)

    env, robot = utils.setup(render=True)
    raw_input('Press enter to continue...')
    monitor = record_video.get_geometry()
    # cf = CostFunction(
    #     robot,
    #     use_all_links=True,
    #     quadratic=False)
    cf = LinearCostFunction(robot, num_dofs=50)
    cf_save_path = os.path.join('saves', 'style_experiment', exp_name, 'model')
    custom_cost = {'NN': planners.get_trajopt_cost(cf)}
    summary_writer = tf.summary.FileWriter(
        os.path.join('tb_logs', 'style_experiment', exp_name))

    # Actual main loop
    global_step = 0
    prev_num_labeled = 0
    num_perturbs = 0
    while True:
        num_labeled = len(labeled_comparison_queue)
        sufficient_labeled_data = num_labeled >= label_batchsize

        # Training step
        if num_labeled - prev_num_labeled > label_batchsize and num_perturbs > 5:
            prev_num_labeled = num_labeled
            num_perturbs = 0
            for _ in range(num_labeled):
                comp = labeled_comparison_queue.sample()
                wpsA = binary_to_array(comp.wpsA)
                wpsB = binary_to_array(comp.wpsB)
                label = comp.label
                wpsA_batch = np.repeat(wpsA[None], 8, axis=0)
                wpsB_batch = np.repeat(wpsB[None], 8, axis=0)
                label_batch = np.repeat(label, 8)
                for batch_idx in range(8):
                    offset = np.random.uniform(0, 2 * np.pi)
                    wpsA_batch[batch_idx, :, 0] = offset
                    wpsB_batch[batch_idx, :, 0] = offset
                cf.train_pref(wpsA_batch, wpsB_batch, label_batch)
            wpsA_list, wpsB_list, labels = [], [], []
            for comp in labeled_comparison_queue.queue:
                wpsA_list.append(binary_to_array(comp.wpsA))
                wpsB_list.append(binary_to_array(comp.wpsB))
                labels.append(comp.label)
            wpsA_list, wpsB_list, labels = np.stack(wpsA_list), np.stack(
                wpsB_list), np.array(labels)
            pred = cf.get_traj_cost(wpsB_list) < cf.get_traj_cost(wpsA_list)
            t_acc = np.mean(labels == pred)
            add_simple_summary(summary_writer, 'training.accuracy', t_acc,
                               global_step)
            summary_writer.flush()
            cf.save_model(cf_save_path, step=global_step)
            global_step += 1
            for idcs in planned_wps:
                planned_wps[idcs] = None

        # Generation step
        for idcs in constants.sg_train_idcs:
            s_idx, g_idx = idcs
            wps = planned_wps[idcs]
            if wps is None:
                q_s = constants.configs[s_idx]
                q_g = constants.configs[g_idx]
                with env:
                    robot.SetActiveDOFValues(q_s)
                    if sufficient_labeled_data:
                        wps = planners.trajopt_simple_plan(
                            env,
                            robot,
                            q_g,
                            custom_costs=custom_cost,
                            joint_vel_coeff=1).GetTraj()
                    else:
                        # Generate pretraining data
                        wps = mu.linspace2d(q_s, q_g, 10)
                planned_wps[idcs] = wps
            else:
                wps = make_perturbs(wps, 1, .1)[0]
                num_perturbs += 1
            vid_name = 's{:d}-g{:d}_traj{:d}.mp4'.format(
                s_idx, g_idx, traj_counter)
            out_path = os.path.join(vid_dir, vid_name)
            with env:
                traj = utils.waypoints_to_traj(env, robot, wps, 1, None)
            # TODO: move the video export to a different process
            if not args.no_record:
                record_video.record(robot, traj, out_path, monitor=monitor)
            traj_queue.put((wps, out_path, idcs, traj_counter))
            traj_counter += 1
        time.sleep(.1)
Esempio n. 18
0
def move_arm_straight_request(manip, n_steps, link_name, xyz_start, xyz_end, quat_start, quat_end, start_joints):
    manip_name = manip.GetName()
    request = {
        "basic_info": {"n_steps": n_steps, "manip": manip_name, "start_fixed": True},
        "costs": [
            {"type": "joint_vel", "params": {"coeffs": [1]}},
            {"type": "collision", "params": {"coeffs": [10], "dist_pen": [0.025]}},
        ],
        "constraints": [
            {
                "type": "pose",
                "name": "final_pose",
                "params": {
                    "pos_coeffs": [10, 10, 10],
                    "rot_coeffs": [10, 10, 10],
                    "xyz": list(xyz_end),
                    "wxyz": list(quat_end),
                    "link": link_name,
                },
            }
        ],
        "init_info": {},
    }

    xyzs = mu.linspace2d(xyz_start, xyz_end, n_steps)
    quats = [rave.quatSlerp(quat_start, quat_end, t) for t in np.linspace(0, 1, n_steps)]
    hmats = [rave.matrixFromPose(np.r_[quat, xyz]) for (xyz, quat) in zip(xyzs, quats)]

    def ikfunc(hmat):
        return ku.ik_for_link(hmat, manip, link_name, return_all_solns=True)

    def nodecost(joints):
        robot = manip.GetRobot()
        saver = rave.Robot.RobotStateSaver(robot)
        robot.SetDOFValues(joints, manip.GetArmJoints())
        return 100 * robot.GetEnv().CheckCollision(robot)

    paths, costs, timesteps = ku.traj_cart2joint(hmats, ikfunc, start_joints=start_joints, nodecost=nodecost)
    i_best = np.argmin(costs)
    print "lowest cost of initial trajs:", costs[i_best]
    if len(timesteps) < n_steps:
        print "timesteps with soln: ", timesteps
        print "linearly interpolating the rest"
        path_init = mu.interp2d(np.arange(n_steps), timesteps, paths[i_best])
    else:
        print "all timesteps have an ik solution"
        path_init = paths[i_best]
    for i in xrange(1, n_steps - 1):
        print "waypoint xyz", xyzs[i]
        waypoint_cnt = {
            "type": "pose",
            "name": "waypoint_pose",
            "params": {
                "xyz": list(xyzs[i]),
                "wxyz": list(quats[i]),
                "link": link_name,
                # "pos_coeffs" : [10,10,10],
                # "rot_coeffs" : [10,10,10],
                "timestep": i,
            },
        }
        request["constraints"].append(waypoint_cnt)
    request["init_info"]["type"] = "given_traj"
    request["init_info"]["data"] = [x.tolist() for x in path_init]

    return request
def main(iterations, activation, normalize, dropout, lr, batchnorm, q_length,
         use_quadratic_features, perturb_amount, provide_vel, include_configs,
         use_all_links, h_size, random_inits, _seed, _run):
    tf.set_random_seed(_seed)  # Set tf's seed to exp seed
    env, robot = utils.setup(render=False)
    cf = CostFunction(robot,
                      num_dofs=7,
                      normalize=normalize,
                      include_configs=include_configs,
                      provide_vel=provide_vel,
                      use_all_links=use_all_links,
                      activation=activation,
                      dropout=dropout,
                      lr=lr,
                      batchnorm=batchnorm,
                      quadratic=use_quadratic_features,
                      h_size=h_size)
    ex.info['num_params'] = cf.num_params
    ex.info['mlp_input_shape'] = cf.mlp.model.input_shape

    summary_writer = tf.summary.FileWriter(
        os.path.join('tb_logs', ex_name, str(_run._id)))

    if use_quadratic_features:
        custom_cost = {'NN': planners.get_trajopt_error_cost(cf)}
    else:
        custom_cost = {'NN': planners.get_trajopt_cost(cf)}

    tqs = {}
    for idcs in constants.sg_train_idcs:
        tqs[idcs] = utils.TrainingQueue(maxsize=q_length)

    # The avg cost of train trajs generated using the true cost fxn.
    BEST_COST_SYNTH = 0.13875292480745718

    for idcs in constants.sg_train_idcs:
        with env:
            linear = mu.linspace2d(constants.configs[idcs[0]],
                                   constants.configs[idcs[1]], 10)
            for wps_perturbed in make_perturbs(linear, 50, perturb_amount):
                true_cost_perturbed = ee_traj_cost(wps_perturbed, robot)
                tqs[idcs].add((wps_perturbed, true_cost_perturbed))

    for i in range(iterations):
        print('[*] Iteration {:d}/{:d}'.format(i, iterations))
        # Training
        for j in range(500):
            for idcs in constants.sg_train_idcs:
                tq = tqs[idcs]
                (wpsA, cA), (wpsB, cB) = tq.sample(num=2)
                if np.allclose(cA, cB):
                    continue
                offset = np.random.uniform(0, 2 * np.pi)
                wpsA[:, 0] = offset
                wpsB[:, 0] = offset
                cf.train_pref(wpsA[None], wpsB[None], [int(cB < cA)])

        random_inputs = np.random.uniform(0, 2 * np.pi, size=(100, 10, 7))
        with env:
            labels = [ee_traj_cost(x, robot) for x in random_inputs]
        corr = cf.get_corrcoef(random_inputs, labels)
        add_simple_summary(summary_writer, 'test.correlation', corr, i)
        summary_writer.flush()

        # Generating training data
        true_cost_list = [
        ]  # want to keep track of how good our true costs are
        true_cost_variances = []  # Only applies if random_init = True
        for idcs in constants.sg_train_idcs:
            with env:
                robot.SetActiveDOFValues(constants.configs[idcs[0]])
                if random_inits:
                    results_list = planners.trajopt_multi_plan(
                        env,
                        robot,
                        constants.configs[idcs[1]],
                        num_inits=10,
                        custom_traj_costs=(custom_cost
                                           if use_quadratic_features else {}),
                        custom_costs=({} if use_quadratic_features else
                                      custom_cost),
                        joint_vel_coeff=0)
                    true_costs = []
                    for res in results_list:
                        wps = res.GetTraj()
                        true_cost = ee_traj_cost(wps, robot)
                        tqs[idcs].add((wps, true_cost))
                        true_costs.append(true_cost)
                    true_cost_list.append(np.min(true_costs))
                    true_cost_variances.append(np.var(true_costs))
                else:
                    wps = planners.trajopt_simple_plan(
                        env,
                        robot,
                        constants.configs[idcs[1]],
                        custom_traj_costs=(custom_cost
                                           if use_quadratic_features else {}),
                        custom_costs=({} if use_quadratic_features else
                                      custom_cost),
                        joint_vel_coeff=0).GetTraj()
                    true_cost = ee_traj_cost(wps, robot)
                    tqs[idcs].add((wps, true_cost))
                    true_cost_list.append(true_cost)
                    for wps_perturbed in make_perturbs(x, 10, perturb_amount):
                        true_cost_perturbed = ee_traj_cost(
                            wps_perturbed, robot)
                        tqs[idcs].add((wps_perturbed, true_cost_perturbed))
        add_simple_summary(summary_writer, 'training.true_cost',
                           np.mean(true_cost_list), i)
        if random_inits:
            add_simple_summary(summary_writer, 'training.true_cost_var',
                               np.var(true_cost_variances, i))
        summary_writer.flush()  # flush summary writer at end of iteration
    save_folder = './saves/learned_ssee/'
    cf.save_model(os.path.join(save_folder, 'model'))
    for fname in os.listdir(save_folder):
        ex.add_artifact(os.path.join(save_folder, fname))