Esempio n. 1
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = TransNorm2d(planes)  ## replace
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = TransNorm2d(planes)  ## replace
     self.downsample = downsample
     self.stride = stride
Esempio n. 2
0
    def _make_layer(self, block, planes, blocks, stride=1, type=None):

        downsample = None

        if stride != 1 or self.inplanes != planes * block.expansion:
            if type == 'normal':
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes,
                              planes * block.expansion,
                              kernel_size=1,
                              stride=stride,
                              bias=False),
                    nn.BatchNorm2d(planes * block.expansion))

            else:
                #print('---here')
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes,
                              planes * block.expansion,
                              kernel_size=1,
                              stride=stride,
                              bias=False),
                    TransNorm2d(planes * block.expansion))
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample,
                            type))  # type 추가하기
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, type=type))

        return nn.Sequential(*layers)
Esempio n. 3
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = TransNorm2d(planes)  ## replace
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = TransNorm2d(planes)  ## replace
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.bn3 = TransNorm2d(planes * 4)  ## replace
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Esempio n. 4
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = TransNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Esempio n. 5
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 type=None):  # type이 어떻게 넘어가는지 확인 용
        super(Bottleneck, self).__init__()

        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)

        if type == 'normal':
            self.bn1 = nn.BatchNorm2d(planes)

        else:
            self.bn1 = TransNorm2d(planes)

        self.conv2 = nn.Conv2d(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)

        if type == 'normal':
            self.bn2 = nn.BatchNorm2d(planes)

        else:
            self.bn2 = TransNorm2d(planes)

        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)

        if type == 'normal':
            self.bn3 = nn.BatchNorm2d(planes * 4)
        else:
            self.bn3 = TransNorm2d(planes * 4)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
Esempio n. 6
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                TransNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)