def Img_transform(self, name, size, split='train'): # if len(args.crop_size) == 1: # crop_size = (args.crop_size[0] , args.crop_size[0]) ## W x H # else: # crop_size = (args.crop_size[1] , args.crop_size[0]) assert (isinstance(size, tuple) and len(size) == 2) if name in ['CS', 'IDD']: if split == 'train': t = [ transforms.Resize(size), transforms.RandomCrop((512, 512)), transforms.RandomHorizontalFlip(), transforms.ToTensor() ] else: t = [transforms.Resize(size), transforms.ToTensor()] return transforms.Compose(t) if split == 'train': t = [ transforms.Resize(size), transforms.RandomHorizontalFlip(), transforms.ToTensor() ] else: t = [transforms.Resize(size), transforms.ToTensor()] return transforms.Compose(t)
def __init__(self, cfg): self.cfg = cfg if self.cfg.mode == 'train': self.transform = transform.Compose( transform.Normalize(mean=cfg.mean, std=cfg.std), transform.Resize(size=512), transform.RandomRotate(-15, 15), transform.RandomCrop(448, 448), transform.RandomHorizontalFlip(), transform.RandomMask(), transform.ToTensor()) elif self.cfg.mode == 'val' or self.cfg.mode == 'test': self.transform = transform.Compose( transform.Normalize(mean=cfg.mean, std=cfg.std), transform.Resize(size=512), transform.ToTensor()) else: raise ValueError
def __init__(self, cfg): with open(cfg.datapath + '/' + cfg.mode + '.txt', 'r') as lines: self.samples = [] for line in lines: imagepath = cfg.datapath + '/image/' + line.strip() + '.jpg' maskpath = cfg.datapath + '/scribble/' + line.strip() + '.png' self.samples.append([imagepath, maskpath]) if cfg.mode == 'train': self.transform = transform.Compose( transform.Normalize(mean=cfg.mean, std=cfg.std), transform.Resize(320, 320), transform.RandomHorizontalFlip(), transform.RandomCrop(320, 320), transform.ToTensor()) elif cfg.mode == 'test': self.transform = transform.Compose( transform.Normalize(mean=cfg.mean, std=cfg.std), transform.Resize(320, 320), transform.ToTensor()) else: raise ValueError
def __init__(self, cfg): with open(os.path.join(cfg.datapath, cfg.mode + '.txt'), 'r') as lines: self.samples = [] for line in lines: imagepath = os.path.join(cfg.datapath, 'image', line.strip() + '.jpg') maskpath = os.path.join(cfg.datapath, 'mask', line.strip() + '.png') self.samples.append([imagepath, maskpath]) if cfg.mode == 'train': self.transform = transform.Compose( transform.Normalize(mean=cfg.mean, std=cfg.std), transform.Resize(320, 320), transform.RandomHorizontalFlip(), transform.RandomCrop(288, 288), transform.ToTensor()) elif cfg.mode == 'test': self.transform = transform.Compose( transform.Normalize(mean=cfg.mean, std=cfg.std), transform.Resize(320, 320), transform.ToTensor()) else: raise ValueError
import torchvision import torch print(torch.__version__) print(torchvision.__version__) normalize = T.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]) # def normalize(tensor): # # Subtract the mean, and scale to the interval [-1,1] # tensor_minusmean = tensor - tensor.mean() # return tensor_minusmean/tensor_minusmean.abs().max() transform_video = torchvision.transforms.Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 171)), T.RandomHorizontalFlip(), normalize, T.RandomCrop((112, 112)) ]) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") root = ET.parse( '/root/yangsen-data/LIRIS-ACCEDE-movies/ACCEDEmovies.xml').getroot() movie_length = {} def get_sec(time_str: str) -> int: """Get Seconds from time.""" h, m, s = time_str.split(':') return int(h) * 3600 + int(m) * 60 + int(s) for i in root:
if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') synchronize() img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] device = 'cuda' # torch.backends.cudnn.deterministic = True train_trans = transform.Compose( [ transform.RandomScale(0.5, 2.0), # transform.Resize(args.size, None), transform.RandomHorizontalFlip(), transform.RandomCrop(args.size), transform.RandomBrightness(0.04), transform.ToTensor(), transform.Normalize(img_mean, img_std), transform.Pad(args.size) ] ) valid_trans = transform.Compose( [transform.ToTensor(), transform.Normalize(img_mean, img_std)] ) train_set = ADE20K(args.path, 'train', train_trans) valid_set = ADE20K(args.path, 'valid', valid_trans) arch_map = {'vovnet39': vovnet39, 'vovnet57': vovnet57}