Esempio n. 1
0
    def __getitem__(self, index):
        #print(self.d_path+self.input_paths[index])
        image = Image.open(self.d_path+self.input_paths[index]).convert('RGB')
        # image_hsv = Image.open(self.input_paths[index]).convert('HSV')
        label = Image.open(self.g_path+self.label_paths[index]).convert('P')

        image = self.img_resize(image)
        # image_hsv = self.img_resize(image_hsv)
        label = self.label_resize(label)
        # brightness_factor = 1 + random.uniform(-0.4,0.4)
        # contrast_factor = 1 + random.uniform(-0.4,0.4)
        # saturation_factor = 1 + random.uniform(-0.4,0.4)
        # hue_factor = random.uniform(-0.1,0.1)
        # gamma = 1 + random.uniform(-0.1,0.1)

        #randomly flip images
        if random.random() > 0.5:
            image = HorizontalFlip()(image)
            # image_hsv = HorizontalFlip()(image_hsv)
            label = HorizontalFlip()(label)
        if random.random() > 0.5:
            image = VerticalFlip()(image)
            # image_hsv = VerticalFlip()(image_hsv)
            label = VerticalFlip()(label)

        #randomly crop image to size 128*128
        w, h = image.size
        th, tw = (128,128)
        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        if w == tw and h == th:
            image = image
            # image_hsv = image_hsv
            label = label
        else:
            if random.random() > 0.5:
                image = image.resize((128,128),Image.BILINEAR)
                # image_hsv = image_hsv.resize((128,128),Image.BILINEAR)
                label = label.resize((128,128),Image.NEAREST)
            else:
                image = image.crop((x1, y1, x1 + tw, y1 + th))
                # image_hsv = image_hsv.crop((x1, y1, x1 + tw, y1 + th))
                label = label.crop((x1, y1, x1 + tw, y1 + th))
        # angle = random.randint(-20, 20)
        # image = image.rotate(angle, resample=Image.BILINEAR)
        # image_hsv = image_hsv.rotate(angle, resample=Image.BILINEAR)
        # label = label.rotate(angle, resample=Image.NEAREST)
        image = self.img_transform(image)
        # image_hsv = self.hsv_transform(image_hsv)
        # image = torch.cat([image,image_hsv],0)


        label = self.label_transform(label)

        return image, label
 def __init__(self,
              root,
              split="train",
              img_transform=None,
              label_transform=None,
              test=True,
              label_type=None):
     self.root = root
     self.split = split
     # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
     self.files = collections.defaultdict(list)
     self.img_transform = img_transform
     self.label_transform = label_transform
     self.h_flip = HorizontalFlip()
     self.v_flip = VerticalFlip()
     self.test = test
     data_dir = root
     # for split in ["train", "trainval", "val"]:
     imgsets_dir = osp.join(data_dir, "leftImg8bit/%s.txt" % split)
     with open(imgsets_dir) as imgset_file:
         for name in imgset_file:
             name = name.strip()
             img_file = osp.join(data_dir, "leftImg8bit/%s" % name)
             if label_type == "label16":
                 name = name.replace('leftImg8bit', 'gtFine_label16IDs')
             else:
                 name = name.replace('leftImg8bit', 'gtFine_labelTrainIds')
             label_file = osp.join(data_dir, "gtFine/%s" % name)
             self.files[split].append({
                 "img": img_file,
                 "label": label_file
             })
 def __init__(self,
              root,
              split="train",
              img_transform=None,
              label_transform=None,
              test=True,
              input_ch=3):
     assert input_ch == 3
     self.root = root
     self.split = split
     # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
     self.files = collections.defaultdict(list)
     self.img_transform = img_transform
     self.label_transform = label_transform
     self.h_flip = HorizontalFlip()
     self.v_flip = VerticalFlip()
     self.test = test
     data_dir = root
     # for split in ["train", "trainval", "val"]:
     imgsets_dir = os.listdir(data_dir)
     for name in imgsets_dir:
         img_file = osp.join(data_dir, "%s" % name)
         self.files[split].append({
             "img": img_file,
         })
Esempio n. 4
0
    def __init__(self, root, split="images", img_transform=None, label_transform=None,
                 test=False, input_ch=3):
        # Note; split "train" and "images" are SAME!!!

        assert split in ["images", "test", "train"]

        assert input_ch in [1, 3, 4]
        self.input_ch = input_ch
        self.root = root
        self.split = split
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()
        self.test = test
        data_dir = root

        imgsets_dir = osp.join(data_dir, "%s.txt" % split)

        with open(imgsets_dir) as imgset_file:
            for name in imgset_file:
                name = name.strip()
                img_file = osp.join(data_dir, "%s" % name)
                # name = name.replace('leftImg8bit','gtFine_labelTrainIds')
                label_file = osp.join(data_dir, "%s" % name.replace('images', 'labels_gt'))
                self.files[split].append({
                    "img": img_file,
                    "label": label_file
                })
Esempio n. 5
0
    def __init__(self, root, split="train", img_transform=None, label_transform=None, test=True,
                 label_type=None):
        self.root = root
        self.split = split
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()
        self.test = test
        # for split in ["train", "trainval", "val"]:
        if split == "train":
            img_path = 'data/filelist/cityscapes_imagelist_train.txt'
            label_path = "data/filelist/cityscapes_labellist_train_label16.txt"
        elif split == "val":
            img_path = 'data/filelist/cityscapes_imagelist_val.txt'
            label_path = "data/filelist/cityscapes_labellist_val_label16.txt"
        else:
            raise ValueError


        with open(img_path,"r") as f:
            rgb_fn_list = [os.path.join(self.root,"leftImg8bit", split, tmp.strip()) for tmp in f.readlines()]

        with open(label_path, "r") as f:
            gt_fn_list =  [os.path.join(self.root, "label16_for_synthia", tmp.strip()) for tmp in f.readlines()]

        for rgb_fn, gt_fn in zip(rgb_fn_list, gt_fn_list):
            self.files[split].append({
                "img": rgb_fn,
                "label": gt_fn
            })
Esempio n. 6
0
    def __init__(self,
                 root,
                 split="test",
                 img_transform=None,
                 label_transform=None):
        self.root = root
        self.split = split
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()

        data_dir = osp.join(root, "MSCOCO")
        # for split in ["train", "trainval", "val"]:
        imgsets_dir = osp.join(data_dir, "%s.txt" % split)
        with open(imgsets_dir) as imgset_file:
            for name in imgset_file:
                name = name.strip()
                img_file = osp.join(data_dir, "train2014_org/%s.jpg" % name)
                label_file = osp.join(data_dir, "train2014_gt/%s.png" % name)
                self.files[split].append({
                    "img": img_file,
                    "label": label_file
                })
Esempio n. 7
0
    def __init__(self,
                 root,
                 split="train",
                 img_transform=None,
                 label_transform=None,
                 mask_transform=None):
        self.root = root
        self.split = split
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.mask_transform = mask_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()

        data_dir = osp.join(root, "eyedata", split)
        # for split in ["train", "trainval", "val"]:
        imgsets_dir = osp.join(data_dir, "img")
        for name in os.listdir(imgsets_dir):
            name = os.path.splitext(name)[0]
            img_file = osp.join(data_dir, "img/%s.tif" % name)
            label_file = osp.join(data_dir, "label/%s.gif" % name)
            mask_file = osp.join(data_dir, "mask/%s.gif" % name)
            self.files[split].append({
                "img": img_file,
                "label": label_file,
                "mask": mask_file
            })
 def __init__(self, root, name, split="train", img_transform=None, label_transform=None, test=True, input_ch=3,
              label_type=None):
     self.root = root
     self.split = split
     self.name = name
     # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
     self.files = collections.defaultdict(list)
     self.img_transform = img_transform
     self.label_transform = label_transform
     self.h_flip = HorizontalFlip()
     self.v_flip = VerticalFlip()
     self.test = test
     data_dir = '/media/VSlab/ethanchen20xx/datasets/NTHU_512/'
     # for split in ["train", "trainval", "val"]:        
     imgsets_dir = osp.join(root, "imgs", split, "%s.txt"%name)
     with open(imgsets_dir) as imgset_file:
         for name in imgset_file:
             name = name.strip()
             img_file = osp.join(data_dir,"imgs", name)
             # no label in this dataset
             label_file = img_file #osp.join(data_dir, 'labels', name)
             self.files[split].append({
                 "img": img_file,
                 "label": label_file
             })
Esempio n. 9
0
    def __init__(self,
                 root,
                 split="train",
                 img_transform=None,
                 label_transform=None):
        self.root = root
        self.split = split
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()

        data_dir = osp.join(root, "cityspace")
        # for split in ["train", "trainval", "val"]:
        imgsets_dir = osp.join(data_dir, "%s.txt" % split)
        with open(imgsets_dir) as imgset_file:
            for name in imgset_file:
                name = name.strip()
                img_file = osp.join(
                    data_dir, "leftImg8bit/train/%s_leftImg8bit.png" % name)
                # print img_file

                label_file = osp.join(
                    data_dir,
                    "gtFine/train/%s_gtFine_labelTrainIds.png" % name)
                # print label_file
                # exit()

                self.files[split].append({
                    "img": img_file,
                    "label": label_file
                })
Esempio n. 10
0
    def __init__(self, root, img_transform=None, label_transform=None):
        self.root = root
        self.mode = 'train'
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()

        for mode in ['train', 'val']:
            image_basenames = [osp.basename(f) for f in glob.glob(osp.join(self.root, mode, 'rgb/*.png'))]
            for name in image_basenames:
                img_file = osp.join(self.root, mode, 'rgb', name)
                label_file = osp.join(self.root, mode, 'gt', name)
                self.files[mode].append({
                    "img": img_file,
                    "label": label_file
                })
Esempio n. 11
0
    def __init__(self, root, split="trainval", img_transform=None, label_transform=None):
        self.root = root
        self.split = split
        self.tmp = []
        # self.mean_bgr = np.array([104.00698793, 116.66876762, 122.67891434])
        self.files = collections.defaultdict(list)
        self.img_transform = img_transform
        self.label_transform = label_transform
        self.h_flip = HorizontalFlip()
        self.v_flip = VerticalFlip()

        data_dir = osp.join(root, "VOC2012")

        # for split in ["train", "trainval", "val"]:

        imgsets_dir = osp.join(data_dir, "ImageSets/Segmentation/%s.txt" % split)
        split_dir = sorted(glob.glob('/home/asilla/hanh/VOC2012/split_data' + '/*'))
        for image in split_dir:
            basename = os.path.splitext(os.path.basename(image))[0]
            self.tmp.append(basename)
        # print(self.tmp)
        # exit()
        with open(imgsets_dir) as imgset_file:
            for name in imgset_file:
                name = name.strip()
                if name in self.tmp:
                    continue
                img_file = osp.join(data_dir, "JPEGImages/%s.jpg" % name)
                print(img_file)
                label_file = osp.join(data_dir, "SegmentationClass/%s.png" % name)
                print(label_file)
                if not os.path.exists(img_file):
                    continue
                if not os.path.exists(label_file):
                    continue
                self.files[split].append({
                    "img": img_file,
                    "label": label_file
                })
        print(self.files[split])
        print("data load success")
Esempio n. 12
0
    input_transform = Compose([
        Scale(scale, Image.BILINEAR),
        ToYUV(),
        ToTensor(),
        Normalize([.5, 0, 0], [.5, .5, .5]),
    ])
    target_transform = Compose([
        Scale(scale, Image.NEAREST),
        ToTensor(),
        ToLabel(),
    ])

    input_transform_tr = Compose([
        Scale(scale, Image.BILINEAR),
        HorizontalFlip(),
        VerticalFlip(),
        ColorJitter(brightness=0.5, contrast=0.5, saturation=0.4, hue=0.3),
        ToYUV(),
        ToTensor(),
        Normalize([.5, 0, 0], [.5, .5, .5]),
    ])
    target_transform_tr = Compose([
        Scale(scale, Image.NEAREST),
        HorizontalFlip(),
        VerticalFlip(),
        ToTensor(),
        ToLabel(),
    ])

    seed = 12345678
    np.random.seed(seed)