Esempio n. 1
0
    def test_vec_point_multiplication(self):
        m = Transformation(
            m=[
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 9.0, 8.0, 7.0],
                [0.0, 0.0, 0.0, 1.0],
            ],
            invm=[
                [-3.75, 2.75, -1, 0],
                [5.75, -4.75, 2.0, 1.0],
                [-2.25, 2.25, -1.0, -2.0],
                [0.0, 0.0, 0.0, 1.0],
            ],
        )
        assert m.is_consistent()

        expected_v = Vec(14.0, 38.0, 51.0)
        assert expected_v.is_close(m * Vec(1.0, 2.0, 3.0))

        expected_p = Point(18.0, 46.0, 58.0)
        assert expected_p.is_close(m * Point(1.0, 2.0, 3.0))

        expected_n = Normal(-8.75, 7.75, -3.0)
        assert expected_n.is_close(m * Normal(3.0, 2.0, 4.0))
Esempio n. 2
0
    def importFromFile(self):
        tlist = Transformation.getAll()
        if len(tlist) > 0:
            ret = QMessageBox.question(
                self, self.tr("Import"),
                self.tr("Do you want to keep the defined transformations?"),
                QMessageBox.Yes | QMessageBox.No)

        infile = QFileDialog.getOpenFileName(
            self, self.tr("Select the file containing transformations"),
            self.lastImportFile(), self.tr("XML file (*.xml)"))
        if infile.isEmpty():
            return
        self.setLastImportFile(infile)

        if len(tlist) > 0 and ret == QMessageBox.No:
            # clear all existent transformations before continue
            for t in tlist:
                t.deleteData()

        if not Transformation.importFromXml(infile):
            return False

        self.table.model().reloadData()
        self.table.model().reset()
        return True
Esempio n. 3
0
    def test_is_close(self):
        m1 = Transformation(
            m=[
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 9.0, 8.0, 7.0],
                [6.0, 5.0, 4.0, 1.0],
            ],
            invm=[
                [-3.75, 2.75, -1, 0],
                [4.375, -3.875, 2.0, -0.5],
                [0.5, 0.5, -1.0, 1.0],
                [-1.375, 0.875, 0.0, -0.5],
            ],
        )

        assert m1.is_consistent()

        # Not using "deepcopy" here would make Python pass a pointer to the *same* matrices and vectors
        m2 = Transformation(m=deepcopy(m1.m), invm=deepcopy(m1.invm))
        assert m1.is_close(m2)

        m3 = Transformation(m=deepcopy(m1.m), invm=deepcopy(m1.invm))
        m3.m[2][
            2] += 1.0  # Note: this makes "m3" not consistent (m3.is_consistent() == False)
        assert not m1.is_close(m3)

        m4 = Transformation(m=deepcopy(m1.m), invm=deepcopy(m1.invm))
        m4.invm[2][
            2] += 1.0  # Note: this makes "m4" not consistent (m4.is_consistent() == False)
        assert not m1.is_close(m4)
Esempio n. 4
0
    def test_multiplication(self):
        m1 = Transformation(
            m=[
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 9.0, 8.0, 7.0],
                [6.0, 5.0, 4.0, 1.0],
            ],
            invm=[
                [-3.75, 2.75, -1, 0],
                [4.375, -3.875, 2.0, -0.5],
                [0.5, 0.5, -1.0, 1.0],
                [-1.375, 0.875, 0.0, -0.5],
            ],
        )
        assert m1.is_consistent()

        m2 = Transformation(
            m=[
                [3.0, 5.0, 2.0, 4.0],
                [4.0, 1.0, 0.0, 5.0],
                [6.0, 3.0, 2.0, 0.0],
                [1.0, 4.0, 2.0, 1.0],
            ],
            invm=[
                [0.4, -0.2, 0.2, -0.6],
                [2.9, -1.7, 0.2, -3.1],
                [-5.55, 3.15, -0.4, 6.45],
                [-0.9, 0.7, -0.2, 1.1],
            ],
        )
        assert m2.is_consistent()

        expected = Transformation(
            m=[
                [33.0, 32.0, 16.0, 18.0],
                [89.0, 84.0, 40.0, 58.0],
                [118.0, 106.0, 48.0, 88.0],
                [63.0, 51.0, 22.0, 50.0],
            ],
            invm=[
                [-1.45, 1.45, -1.0, 0.6],
                [-13.95, 11.95, -6.5, 2.6],
                [25.525, -22.025, 12.25, -5.2],
                [4.825, -4.325, 2.5, -1.1],
            ],
        )
        assert expected.is_consistent()

        assert expected.is_close(m1 * m2)
Esempio n. 5
0
def main():

    v_trans = [90, 50, 0]
    v_scale = [2, 2, 2]

    v = np.array([[220, 290, 0, 1]])
    vv = np.array([[-220, -290, 0, 1]])

    # m = Matrix(matrix = v)
    # m1 = Matrix(matrix = mx)

    # cisalhamento = Transformation(30,[0,0,0],[0,0,0],0).get_matrix(0)
    translacao = Transformation(0, v_trans, [0, 0, 0], 0).get_matrix(6)
    # scala = Transformation(0,[0,0,0],v_scale,0).get_matrix(7)
    # rotacao = Transformation(0,[0,0,0],[0,0,0],270).get_matrix(9)
    # espelho = Transformation(0,[0,0,0],[0,0,0],0).get_matrix(11)

    axis = np.array([[2.88, -5, 2.88, 0]])
    vector = np.array([[2.88], [0], [-11.18], [1]])

    q = quaternion(axis, 90)
    # vv = vector/la.norm(vector)

    m = run_quaternion(vector, q)
    # m = np.array(translacao)

    print np.dot(m, vector)
def main():

    parser = argparse.ArgumentParser(description="Compute specific dataset for model using of metric")

    parser.add_argument('--output', type=str, help='output file name desired (.train and .test)')
    parser.add_argument('--folder', type=str,
                    help='folder where generated data are available',
                    required=True) 
    parser.add_argument('--features', type=str,
                                     help="list of features choice in order to compute data",
                                     default='svd_reconstruction, ipca_reconstruction',
                                     required=True)
    parser.add_argument('--params', type=str, 
                                    help="list of specific param for each metric choice (See README.md for further information in 3D mode)", 
                                    default='100, 200 :: 50, 25',
                                    required=True)
    parser.add_argument('--sequence', type=int, help='sequence length expected', required=True)
    parser.add_argument('--size', type=str, 
                                  help="Size of input images",
                                  default="100, 100")
    parser.add_argument('--selected_zones', type=str, help='file which contains all selected zones of scene', required=True)    

    args = parser.parse_args()

    p_filename   = args.output
    p_folder     = args.folder
    p_features   = list(map(str.strip, args.features.split(',')))
    p_params     = list(map(str.strip, args.params.split('::')))
    p_sequence   = args.sequence
    p_size       = args.size # not necessary to split here
    p_selected_zones = args.selected_zones

    selected_zones = {}
    with(open(p_selected_zones, 'r')) as f:

        for line in f.readlines():

            data = line.split(';')
            del data[-1]
            scene_name = data[0]
            thresholds = data[1:]

            selected_zones[scene_name] = [ int(t) for t in thresholds ]

    # create list of Transformation
    transformations = []

    for id, feature in enumerate(p_features):

        if feature not in features_choices:
            raise ValueError("Unknown metric, please select a correct metric : ", features_choices)

        transformations.append(Transformation(feature, p_params[id], p_size))

    if transformations[0].getName() == 'static':
        raise ValueError("The first transformation in list cannot be static")


    # create database using img folder (generate first time only)
    generate_data_model(p_filename, transformations, p_folder, selected_zones, p_sequence)
    def reloadData(self):
        res = Transformation.getByCrs(self.crsA, self.crsB, self.enabledOnly,
                                      True)
        self.transformations = map(lambda x: x[0], res)
        self.isInverse = map(lambda x: x[1], res)

        self.row_count = len(self.transformations)
Esempio n. 8
0
    def __init__(self, aspect_ratio=1.0, transformation=Transformation()):
        """Create a new orthographic camera

        The parameter `aspect_ratio` defines how larger than the height is the image. For fullscreen
        images, you should probably set `aspect_ratio` to 16/9, as this is the most used aspect ratio
        used in modern monitors.

        The `transformation` parameter is an instance of the :class:`.Transformation` class."""
        self.aspect_ratio = aspect_ratio
        self.transformation = transformation
Esempio n. 9
0
    def exportToFile(self):
        outfile = QFileDialog.getSaveFileName(
            self, self.tr("Select where to export transformations"),
            self.lastImportFile(), self.tr("XML file (*.xml)"))
        if outfile.isEmpty():
            return
        if not outfile.endsWith(".xml", Qt.CaseInsensitive):
            outfile += ".xml"
        self.setLastImportFile(outfile)

        return Transformation.exportToXml(outfile)
Esempio n. 10
0
    def test_inverse(self):
        m1 = Transformation(
            m=[
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 9.0, 8.0, 7.0],
                [6.0, 5.0, 4.0, 1.0],
            ],
            invm=[
                [-3.75, 2.75, -1, 0],
                [4.375, -3.875, 2.0, -0.5],
                [0.5, 0.5, -1.0, 1.0],
                [-1.375, 0.875, 0.0, -0.5],
            ],
        )

        m2 = m1.inverse()
        assert m2.is_consistent()

        prod = m1 * m2
        assert prod.is_consistent()
        assert prod.is_close(Transformation())
Esempio n. 11
0
    def __init__(self,
                 screen_distance=1.0,
                 aspect_ratio=1.0,
                 transformation=Transformation()):
        """Create a new perspective camera

        The parameter `screen_distance` tells how much far from the eye of the observer is the screen,
        and it influences the so-called «aperture» (the field-of-view angle along the horizontal direction).
        The parameter `aspect_ratio` defines how larger than the height is the image. For fullscreen
        images, you should probably set `aspect_ratio` to 16/9, as this is the most used aspect ratio
        used in modern monitors.

        The `transformation` parameter is an instance of the :class:`.Transformation` class."""
        self.screen_distance = screen_distance
        self.aspect_ratio = aspect_ratio
        self.transformation = transformation
Esempio n. 12
0
def parse_transformation(input_file, scene: Scene):
    result = Transformation()

    while True:
        transformation_kw = expect_keywords(input_file, [
            KeywordEnum.IDENTITY,
            KeywordEnum.TRANSLATION,
            KeywordEnum.ROTATION_X,
            KeywordEnum.ROTATION_Y,
            KeywordEnum.ROTATION_Z,
            KeywordEnum.SCALING,
        ])

        if transformation_kw == KeywordEnum.IDENTITY:
            pass  # Do nothing (this is a primitive form of optimization!)
        elif transformation_kw == KeywordEnum.TRANSLATION:
            expect_symbol(input_file, "(")
            result *= translation(parse_vector(input_file, scene))
            expect_symbol(input_file, ")")
        elif transformation_kw == KeywordEnum.ROTATION_X:
            expect_symbol(input_file, "(")
            result *= rotation_x(expect_number(input_file, scene))
            expect_symbol(input_file, ")")
        elif transformation_kw == KeywordEnum.ROTATION_Y:
            expect_symbol(input_file, "(")
            result *= rotation_y(expect_number(input_file, scene))
            expect_symbol(input_file, ")")
        elif transformation_kw == KeywordEnum.ROTATION_Z:
            expect_symbol(input_file, "(")
            result *= rotation_z(expect_number(input_file, scene))
            expect_symbol(input_file, ")")
        elif transformation_kw == KeywordEnum.SCALING:
            expect_symbol(input_file, "(")
            result *= scaling(parse_vector(input_file, scene))
            expect_symbol(input_file, ")")

        # We must peek the next token to check if there is another transformation that is being
        # chained or if the sequence ends. Thus, this is a LL(1) parser.
        next_kw = input_file.read_token()
        if (not isinstance(next_kw, SymbolToken)) or (next_kw.symbol != "*"):
            # Pretend you never read this token and put it back!
            input_file.unread_token(next_kw)
            break

    return result
Esempio n. 13
0
 def createNew(self):
     self.editTransformation(Transformation())
Esempio n. 14
0
def main():

    parser = argparse.ArgumentParser(
        description=
        "Compute and prepare data of feature of all scenes using specific interval if necessary"
    )

    parser.add_argument(
        '--features',
        type=str,
        help="list of features choice in order to compute data",
        default='svd_reconstruction, ipca_reconstruction',
        required=True)
    parser.add_argument(
        '--params',
        type=str,
        help=
        "list of specific param for each feature choice (See README.md for further information in 3D mode)",
        default='100, 200 :: 50, 25',
        required=True)
    parser.add_argument('--folder',
                        type=str,
                        help='folder where dataset is available',
                        required=True)
    parser.add_argument('--output',
                        type=str,
                        help='output folder where data are saved',
                        required=True)
    parser.add_argument('--thresholds',
                        type=str,
                        help='file which cantains all thresholds',
                        required=True)
    parser.add_argument('--size',
                        type=str,
                        help="specific size of image",
                        default='100, 100',
                        required=True)
    parser.add_argument('--replace',
                        type=int,
                        help='replace previous picutre',
                        default=1)

    args = parser.parse_args()

    p_features = list(map(str.strip, args.features.split(',')))
    p_params = list(map(str.strip, args.params.split('::')))
    p_folder = args.folder
    p_output = args.output
    p_thresholds = args.thresholds
    p_size = args.size
    p_replace = bool(args.replace)

    # list of transformations
    transformations = []

    for id, feature in enumerate(p_features):

        if feature not in cfg.features_choices_labels or feature == 'static':
            raise ValueError(
                "Unknown feature {0}, please select a correct feature (`static` excluded) : {1}"
                .format(feature, cfg.features_choices_labels))

        transformations.append(Transformation(feature, p_params[id], p_size))

    human_thresholds = {}

    # 3. retrieve human_thresholds
    # construct zones folder
    with open(p_thresholds) as f:
        thresholds_line = f.readlines()

        for line in thresholds_line:
            data = line.split(';')
            del data[-1]  # remove unused last element `\n`
            current_scene = data[0]
            thresholds_scene = data[1:]

            if current_scene != '50_shades_of_grey':
                human_thresholds[current_scene] = [
                    int(threshold) for threshold in thresholds_scene
                ]

    # generate all or specific feature data
    for transformation in transformations:
        generate_data(transformation, p_folder, p_output, human_thresholds,
                      p_replace)
 def reloadData(self):
     self.transformations = Transformation.getAll(self.enabledOnly)
     self.row_count = len(self.transformations)
Esempio n. 16
0
    def get_transformation_for_city(self, city):
        tour = self.reverse_mapping[city]
        if tour not in self.transformations:
            self.transformations[tour] = Transformation(tour)

        return self.transformations[tour]
Esempio n. 17
0
 def __init__(self,
              transformation=Transformation(),
              material: Material = Material()):
     """Create a xy plane, potentially associating a transformation to it"""
     super().__init__(transformation, material)
Esempio n. 18
0
    def test_parser(self):
        stream = StringIO("""
        float clock(150)
    
        material sky_material(
            diffuse(uniform(<0, 0, 0>)),
            uniform(<0.7, 0.5, 1>)
        )
    
        # Here is a comment
    
        material ground_material(
            diffuse(checkered(<0.3, 0.5, 0.1>,
                              <0.1, 0.2, 0.5>, 4)),
            uniform(<0, 0, 0>)
        )
    
        material sphere_material(
            specular(uniform(<0.5, 0.5, 0.5>)),
            uniform(<0, 0, 0>)
        )
    
        plane (sky_material, translation([0, 0, 100]) * rotation_y(clock))
        plane (ground_material, identity)
    
        sphere(sphere_material, translation([0, 0, 1]))
    
        camera(perspective, rotation_z(30) * translation([-4, 0, 1]), 1.0, 2.0)
        """)

        scene = parse_scene(input_file=InputStream(stream))

        # Check that the float variables are ok

        assert len(scene.float_variables) == 1
        assert "clock" in scene.float_variables.keys()
        assert scene.float_variables["clock"] == 150.0

        # Check that the materials are ok

        assert len(scene.materials) == 3
        assert "sphere_material" in scene.materials
        assert "sky_material" in scene.materials
        assert "ground_material" in scene.materials

        sphere_material = scene.materials["sphere_material"]
        sky_material = scene.materials["sky_material"]
        ground_material = scene.materials["ground_material"]

        assert isinstance(sky_material.brdf, DiffuseBRDF)
        assert isinstance(sky_material.brdf.pigment, UniformPigment)
        assert sky_material.brdf.pigment.color.is_close(Color(0, 0, 0))

        assert isinstance(ground_material.brdf, DiffuseBRDF)
        assert isinstance(ground_material.brdf.pigment, CheckeredPigment)
        assert ground_material.brdf.pigment.color1.is_close(
            Color(0.3, 0.5, 0.1))
        assert ground_material.brdf.pigment.color2.is_close(
            Color(0.1, 0.2, 0.5))
        assert ground_material.brdf.pigment.num_of_steps == 4

        assert isinstance(sphere_material.brdf, SpecularBRDF)
        assert isinstance(sphere_material.brdf.pigment, UniformPigment)
        assert sphere_material.brdf.pigment.color.is_close(Color(
            0.5, 0.5, 0.5))

        assert isinstance(sky_material.emitted_radiance, UniformPigment)
        assert sky_material.emitted_radiance.color.is_close(
            Color(0.7, 0.5, 1.0))
        assert isinstance(ground_material.emitted_radiance, UniformPigment)
        assert ground_material.emitted_radiance.color.is_close(Color(0, 0, 0))
        assert isinstance(sphere_material.emitted_radiance, UniformPigment)
        assert sphere_material.emitted_radiance.color.is_close(Color(0, 0, 0))

        # Check that the shapes are ok

        assert len(scene.world.shapes) == 3
        assert isinstance(scene.world.shapes[0], Plane)
        assert scene.world.shapes[0].transformation.is_close(
            translation(Vec(0, 0, 100)) * rotation_y(150.0))
        assert isinstance(scene.world.shapes[1], Plane)
        assert scene.world.shapes[1].transformation.is_close(Transformation())
        assert isinstance(scene.world.shapes[2], Sphere)
        assert scene.world.shapes[2].transformation.is_close(
            translation(Vec(0, 0, 1)))

        # Check that the camera is ok

        assert isinstance(scene.camera, PerspectiveCamera)
        assert scene.camera.transformation.is_close(
            rotation_z(30) * translation(Vec(-4, 0, 1)))
        assert pytest.approx(1.0) == scene.camera.aspect_ratio
        assert pytest.approx(2.0) == scene.camera.screen_distance
Esempio n. 19
0
 def __init__(self, transformation=Transformation()):
     """Create a unit sphere, potentially associating a transformation to it"""
     super().__init__(transformation)
Esempio n. 20
0
 def __init__(self, transformation=Transformation()):
     """Create a shape, potentially associating a transformation to it"""
     self.transformation = transformation
Esempio n. 21
0
 def __init__(self,
              transformation: Transformation = Transformation(),
              material: Material = Material()):
     """Create a shape, potentially associating a transformation to it"""
     self.transformation = transformation
     self.material = material