Esempio n. 1
0
class VanModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Van does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        VanModel, VanForImageClassification) if is_torch_available() else ()

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = VanModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=VanConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    @unittest.skip(reason="Van does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Van does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @require_scipy
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, module in model.named_modules():
                if isinstance(module,
                              (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm)):
                    self.assertTrue(
                        torch.all(module.weight == 1),
                        msg=
                        f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
                    self.assertTrue(
                        torch.all(module.bias == 0),
                        msg=
                        f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
                elif isinstance(module, nn.Conv2d):
                    fan_out = module.kernel_size[0] * module.kernel_size[
                        1] * module.out_channels
                    fan_out //= module.groups
                    std = math.sqrt(2.0 / fan_out)
                    # divide by std -> mean = 0, std = 1
                    data = module.weight.data.cpu().flatten().numpy() / std
                    test = stats.anderson(data)
                    self.assertTrue(test.statistic > 0.05)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_stages = len(self.model_tester.hidden_sizes)
            # van has no embeddings
            self.assertEqual(len(hidden_states), expected_num_stages)

            # Van's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [
                    self.model_tester.image_size // 4,
                    self.model_tester.image_size // 4
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(
            *config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VAN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = VanModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 2
0
    require_torch,
    require_torch_non_multi_gpu,
    slow,
    torch_device,
)

from .test_modeling_bart import BartModelTester
from .test_modeling_dpr import DPRModelTester
from .test_modeling_t5 import T5ModelTester


TOLERANCE = 1e-3

T5_SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

if is_torch_available() and is_datasets_available() and is_faiss_available():
    import torch
    from datasets import Dataset

    import faiss
    from transformers import (
        AutoConfig,
        AutoModel,
        AutoModelForSeq2SeqLM,
        DPRContextEncoder,
        RagConfig,
        RagModel,
        RagRetriever,
        RagSequenceForGeneration,
        RagTokenForGeneration,
        RagTokenizer,
class RegNetModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as RegNet does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = RegNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=RegNetConfig, has_text_modality=False)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    @unittest.skip(reason="RegNet does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="RegNet does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            for name, module in model.named_modules():
                if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
                    self.assertTrue(
                        torch.all(module.weight == 1),
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
                    self.assertTrue(
                        torch.all(module.bias == 0),
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_stages = self.model_tester.num_stages
            self.assertEqual(len(hidden_states), expected_num_stages + 1)

            # RegNet's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.image_size // 2, self.model_tester.image_size // 2],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        layers_type = ["basic", "bottleneck"]
        for model_class in self.all_model_classes:
            for layer_type in layers_type:
                config.layer_type = layer_type
                inputs_dict["output_hidden_states"] = True
                check_hidden_states_output(inputs_dict, config, model_class)

                # check that output_hidden_states also work using config
                del inputs_dict["output_hidden_states"]
                config.output_hidden_states = True

                check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = RegNetModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 4
0
class ViTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = ((
        ViTModel,
        ViTForImageClassification,
        ViTForMaskedImageModeling,
    ) if is_torch_available() else ())

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=ViTConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # ViT does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                          patch_size[0])
        seq_len = num_patches + 1
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length",
                                     seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length",
                                     encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester,
                                                "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, chunk_length, encoder_key_length
                    ],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, encoder_key_length
                    ],
                )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions),
                             self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, chunk_length, encoder_key_length
                    ],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, encoder_key_length
                    ],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers",
                self.model_tester.num_hidden_layers + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # ViT has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                              patch_size[0])
            seq_length = num_patches + 1

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(
            *config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 5
0
class CLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (CLIPVisionModel, ) if is_torch_available() else ()

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = CLIPVisionModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=CLIPVisionConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # CLIP does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        # in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.model_tester.image_size,
                      self.model_tester.image_size)
        patch_size = (self.model_tester.patch_size,
                      self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                          patch_size[0])
        seq_len = num_patches + 1

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions),
                             self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers",
                self.model_tester.num_hidden_layers + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # CLIP has a different seq_length
            image_size = (self.model_tester.image_size,
                          self.model_tester.image_size)
            patch_size = (self.model_tester.patch_size,
                          self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                              patch_size[0])
            seq_length = num_patches + 1

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_training(self):
        pass

    def test_training_gradient_checkpointing(self):
        pass

    # skip this test as CLIPVisionModel has no base class and is
    # not available in MODEL_MAPPING
    def test_save_load_fast_init_from_base(self):
        pass

    # skip this test as CLIPVisionModel has no base class and is
    # not available in MODEL_MAPPING
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPVisionModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 6
0
class OVAutoModelForAudioClassification(_BaseOVAutoModelClass):
    if is_torch_available():
        _pt_auto_model = AutoModelForAudioClassification
Esempio n. 7
0
def lic2020_convert_examples_to_features(
    examples,
    tokenizer,
    max_seq_length,
    doc_stride,
    max_query_length,
    is_training,
    return_dataset=False,
    threads=1,
    is_split_doc=True,
):
    """
    Converts a list of examples into a list of features that can be directly given as input to a model.
    It is model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.

    Args:
        examples: list of :class:`~transformers.data.processors.squad.SquadExample`
        tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer`
        max_seq_length: The maximum sequence length of the inputs.
        doc_stride: The stride used when the context is too large and is split across several features.
        max_query_length: The maximum length of the query.
        is_training: whether to create features for model evaluation or model training.
        return_dataset: Default False. Either 'pt' or 'tf'.
            if 'pt': returns a torch.data.TensorDataset,
            if 'tf': returns a tf.data.Dataset
        threads: multiple processing threadsa-smi


    Returns:
        list of :class:`~transformers.data.processors.squad.SquadFeatures`

    Example::

        processor = SquadV2Processor()
        examples = processor.get_dev_examples(data_dir)

        features = squad_convert_examples_to_features(
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
        )
    """

    # Defining helper methods
    features = []
    threads = min(threads, cpu_count())

    with Pool(threads,
              initializer=lic2020_convert_example_to_features_init,
              initargs=(tokenizer, )) as p:
        annotate_ = partial(
            lic2020_convert_example_to_features,
            max_seq_length=max_seq_length,
            doc_stride=doc_stride,
            max_query_length=max_query_length,
            is_training=is_training,
            is_split_doc=is_split_doc,
        )
        features = list(
            tqdm(
                p.imap(annotate_, examples, chunksize=32),
                total=len(examples),
                desc="convert squad examples to features",
            ))
    new_features = []
    unique_id = 1000000000
    example_index = 0
    for example_features in tqdm(features,
                                 total=len(features),
                                 desc="add example index and unique id"):
        if not example_features:
            continue
        for example_feature in example_features:
            example_feature.example_index = example_index
            example_feature.unique_id = unique_id
            new_features.append(example_feature)
            unique_id += 1
        example_index += 1
    features = new_features
    del new_features
    if return_dataset == "pt":
        if not is_torch_available():
            raise RuntimeError(
                "PyTorch must be installed to return a PyTorch dataset.")

        # Convert to Tensors and build dataset
        all_input_ids = torch.tensor([f.input_ids for f in features],
                                     dtype=torch.long)
        all_attention_masks = torch.tensor(
            [f.attention_mask for f in features], dtype=torch.long)
        all_token_type_ids = torch.tensor([f.token_type_ids for f in features],
                                          dtype=torch.long)
        all_cls_index = torch.tensor([f.cls_index for f in features],
                                     dtype=torch.long)
        all_p_mask = torch.tensor([f.p_mask for f in features],
                                  dtype=torch.float)
        all_is_impossible = torch.tensor([f.is_impossible for f in features],
                                         dtype=torch.float)

        if not is_training:
            all_example_index = torch.arange(all_input_ids.size(0),
                                             dtype=torch.long)
            dataset = TensorDataset(all_input_ids, all_attention_masks,
                                    all_token_type_ids, all_example_index,
                                    all_cls_index, all_p_mask)
        else:
            all_start_positions = torch.tensor(
                [f.start_position for f in features], dtype=torch.long)
            all_end_positions = torch.tensor(
                [f.end_position for f in features], dtype=torch.long)
            dataset = TensorDataset(
                all_input_ids,
                all_attention_masks,
                all_token_type_ids,
                all_start_positions,
                all_end_positions,
                all_cls_index,
                all_p_mask,
                all_is_impossible,
            )

        return features, dataset
    elif return_dataset == "tf":
        if not is_tf_available():
            raise RuntimeError(
                "TensorFlow must be installed to return a TensorFlow dataset.")

        def gen():
            for ex in features:
                yield (
                    {
                        "input_ids": ex.input_ids,
                        "attention_mask": ex.attention_mask,
                        "token_type_ids": ex.token_type_ids,
                    },
                    {
                        "start_position": ex.start_position,
                        "end_position": ex.end_position,
                        "cls_index": ex.cls_index,
                        "p_mask": ex.p_mask,
                        "is_impossible": ex.is_impossible,
                    },
                )

        return tf.data.Dataset.from_generator(
            gen,
            (
                {
                    "input_ids": tf.int32,
                    "attention_mask": tf.int32,
                    "token_type_ids": tf.int32
                },
                {
                    "start_position": tf.int64,
                    "end_position": tf.int64,
                    "cls_index": tf.int64,
                    "p_mask": tf.int32,
                    "is_impossible": tf.int32,
                },
            ),
            (
                {
                    "input_ids": tf.TensorShape([None]),
                    "attention_mask": tf.TensorShape([None]),
                    "token_type_ids": tf.TensorShape([None]),
                },
                {
                    "start_position": tf.TensorShape([]),
                    "end_position": tf.TensorShape([]),
                    "cls_index": tf.TensorShape([]),
                    "p_mask": tf.TensorShape([None]),
                    "is_impossible": tf.TensorShape([]),
                },
            ),
        )

    return features
Esempio n. 8
0
def custom_squad_convert_examples_to_features(examples,
                                              tokenizer,
                                              max_seq_length,
                                              max_query_length,
                                              is_training,
                                              padding_strategy="max_length",
                                              return_dataset=False,
                                              threads=1,
                                              tqdm_enabled=True,
                                              dataset='hpqa,'):
    """
    Converts a list of examples into a list of features that can be directly given as input to a model.
    It is model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.

    Args:
        examples: list of :class:`~transformers.data.processors.squad.SquadExample`
        tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer`
        max_seq_length: The maximum sequence length of the inputs.
        max_query_length: The maximum length of the query.
        is_training: whether to create features for model evaluation or model training.
        padding_strategy: Default to "max_length". Which padding strategy to use
        return_dataset: Default False. Either 'pt' or 'tf'.
            if 'pt': returns a torch.data.TensorDataset,
            if 'tf': returns a tf.data.Dataset
        threads: multiple processing threadsa-smi


    Returns:
        list of :class:`~transformers.data.processors.squad.SquadFeatures`

    Example::

        processor = SquadV2Processor()
        examples = processor.get_dev_examples(data_dir)

        features = squad_convert_examples_to_features(
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
        )
    """

    # Defining helper methods
    features = []
    threads = min(threads, cpu_count())
    with Pool(threads,
              initializer=custom_squad_convert_example_to_features_init,
              initargs=(tokenizer, )) as p:
        annotate_ = partial(
            custom_squad_convert_example_to_features,
            max_seq_length=max_seq_length,
            max_query_length=max_query_length,
            padding_strategy=padding_strategy,
            is_training=is_training,
            dataset=dataset,
        )
        features = list(
            tqdm(
                p.imap(annotate_, examples, chunksize=32),
                total=len(examples),
                desc="convert squad examples to features",
                disable=not tqdm_enabled,
            ))
    new_features = []
    unique_id = 1000000000
    example_index = 0
    for example_features in tqdm(features,
                                 total=len(features),
                                 desc="add example index and unique id",
                                 disable=not tqdm_enabled):
        if not example_features:
            continue
        for example_feature in example_features:
            example_feature.example_index = example_index
            example_feature.unique_id = unique_id
            new_features.append(example_feature)
            unique_id += 1
        example_index += 1
    features = new_features
    del new_features
    if return_dataset == "pt":
        if not is_torch_available():
            raise RuntimeError(
                "PyTorch must be installed to return a PyTorch dataset.")

        # Convert to Tensors and build dataset
        all_input_ids = torch.tensor([f.input_ids for f in features],
                                     dtype=torch.long)
        all_attention_masks = torch.tensor(
            [f.attention_mask for f in features], dtype=torch.long)
        all_token_type_ids = torch.tensor([f.token_type_ids for f in features],
                                          dtype=torch.long)
        all_cls_index = torch.tensor([f.cls_index for f in features],
                                     dtype=torch.long)
        all_p_mask = torch.tensor([f.p_mask for f in features],
                                  dtype=torch.float)
        all_is_impossible = torch.tensor([f.is_impossible for f in features],
                                         dtype=torch.float)

        if not is_training:
            all_feature_index = torch.arange(all_input_ids.size(0),
                                             dtype=torch.long)
            dataset = TensorDataset(all_input_ids, all_attention_masks,
                                    all_token_type_ids, all_feature_index,
                                    all_cls_index, all_p_mask)
        else:
            all_start_positions = torch.tensor(
                [f.start_position for f in features], dtype=torch.long)
            all_end_positions = torch.tensor(
                [f.end_position for f in features], dtype=torch.long)
            dataset = TensorDataset(
                all_input_ids,
                all_attention_masks,
                all_token_type_ids,
                all_start_positions,
                all_end_positions,
                all_cls_index,
                all_p_mask,
                all_is_impossible,
            )

        return features, dataset
    else:
        return features
class DeiTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = ((
        DeiTModel,
        DeiTForImageClassification,
        DeiTForImageClassificationWithTeacher,
        DeiTForMaskedImageModeling,
    ) if is_torch_available() else ())

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DeiTModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=DeiTConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # DeiT does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        # in DeiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                          patch_size[0])
        seq_len = num_patches + 2
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length",
                                     seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length",
                                     encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester,
                                                "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, chunk_length, encoder_key_length
                    ],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, encoder_key_length
                    ],
                )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions),
                             self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, chunk_length, encoder_key_length
                    ],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, encoder_key_length
                    ],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers",
                self.model_tester.num_hidden_layers + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # DeiT has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                              patch_size[0])
            seq_length = num_patches + 2

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    # special case for DeiTForImageClassificationWithTeacher model
    def _prepare_for_class(self,
                           inputs_dict,
                           model_class,
                           return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict,
                                                 model_class,
                                                 return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                del inputs_dict["labels"]

        return inputs_dict

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        for model_class in self.all_model_classes:
            # DeiTForImageClassificationWithTeacher supports inference-only
            if (model_class in get_values(MODEL_MAPPING)
                    or model_class.__name__
                    == "DeiTForImageClassificationWithTeacher"):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict,
                                             model_class,
                                             return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(
                    MODEL_MAPPING
            ) or not model_class.supports_gradient_checkpointing:
                continue
            # DeiTForImageClassificationWithTeacher supports inference-only
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                continue
            model = model_class(config)
            model.gradient_checkpointing_enable()
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict,
                                             model_class,
                                             return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        problem_types = [
            {
                "title": "multi_label_classification",
                "num_labels": 2,
                "dtype": torch.float
            },
            {
                "title": "single_label_classification",
                "num_labels": 1,
                "dtype": torch.long
            },
            {
                "title": "regression",
                "num_labels": 1,
                "dtype": torch.float
            },
        ]

        for model_class in self.all_model_classes:
            if (model_class not in [
                    *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                    *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ] or model_class.__name__
                    == "DeiTForImageClassificationWithTeacher"):
                continue

            for problem_type in problem_types:
                with self.subTest(
                        msg=
                        f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict,
                                                     model_class,
                                                     return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(
                            1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(
                        problem_type["dtype"])

                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(
                                w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )

                    loss.backward()

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(
            *config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DeiTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 10
0
class LayoutLMv2ModelTest(ModelTesterMixin, unittest.TestCase):

    test_pruning = False
    test_torchscript = False
    test_mismatched_shapes = False

    all_model_classes = (
        (
            LayoutLMv2Model,
            LayoutLMv2ForSequenceClassification,
            LayoutLMv2ForTokenClassification,
            LayoutLMv2ForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )

    def setUp(self):
        self.model_tester = LayoutLMv2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LayoutLMv2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    if key == "layoutlmv2.visual_segment_embedding":
                        # we skip the visual segment embedding as it has a custom initialization scheme
                        continue
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # LayoutLMv2 has a different expected sequence length
        expected_seq_len = (
            self.model_tester.seq_length
            + self.model_tester.image_feature_pool_shape[0] * self.model_tester.image_feature_pool_shape[1]
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, expected_seq_len, expected_seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, expected_seq_len, expected_seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            # LayoutLMv2 has a different expected sequence length
            expected_seq_len = (
                self.model_tester.seq_length
                + self.model_tester.image_feature_pool_shape[0] * self.model_tester.image_feature_pool_shape[1]
            )

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [expected_seq_len, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    @slow
    def test_model_from_pretrained(self):
        for model_name in LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = LayoutLMv2Model.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "backbone" in name or "visual_segment_embedding" in name:
                    continue

                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
Esempio n. 11
0
from transformers.data import SingleSentenceClassificationProcessor as Processor
from transformers.file_utils import is_tf_available, is_torch_available
from transformers.pipelines import TextClassificationPipeline
from transformers.utils import logging
from abc import ABC, abstractmethod
from argparse import ArgumentParser


class BaseTransformersCLICommand(ABC):
    @abstractmethod
    def run(self):
        raise NotImplementedError()


if not is_tf_available() and not is_torch_available():
    raise RuntimeError(
        "At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training"
    )

# TF training parameters
USE_XLA = False
USE_AMP = False


def train_command_factory(args: Namespace):
    """
    Factory function used to instantiate training command from provided command line arguments.

    Returns: TrainCommand
    """
Esempio n. 12
0
class SwinModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = ((
        SwinModel,
        SwinForImageClassification,
    ) if is_torch_available() else ())

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = SwinModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=SwinConfig,
                                          embed_dim=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_inputs_embeds(self):
        # Swin does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                          patch_size[0])
        seq_len = num_patches
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length",
                                     seq_len)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester,
                                                "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), len(self.model_tester.depths))

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            window_size_squared = config.window_size**2
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), len(self.model_tester.depths))

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_heads[0], window_size_squared,
                        chunk_length, window_size_squared
                    ],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_heads[0], window_size_squared,
                        window_size_squared
                    ],
                )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions),
                             len(self.model_tester.depths))
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_heads[0], window_size_squared,
                        chunk_length, window_size_squared
                    ],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_heads[0], window_size_squared,
                        window_size_squared
                    ],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(self.model_tester,
                                          "expected_num_hidden_layers",
                                          len(self.model_tester.depths) + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # Swin has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                              patch_size[0])

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [num_patches, self.model_tester.embed_dim],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(
            *config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in SWIN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SwinModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=
                        f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
class CvtModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        CvtModel, CvtForImageClassification) if is_torch_available() else ()

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = CvtModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=CvtConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    @unittest.skip(reason="Cvt does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Cvt does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = len(self.model_tester.depth)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # verify the first hidden states (first block)
            self.assertListEqual(
                list(hidden_states[0].shape[-3:]),
                [
                    self.model_tester.embed_dim[0],
                    self.model_tester.image_size // 4,
                    self.model_tester.image_size // 4,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(
            *config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CvtModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 14
0
class ViTMAEModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (ViTMAEModel,
                         ViTMAEForPreTraining) if is_torch_available() else ()

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTMAEModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=ViTMAEConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # ViTMAE does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        # in ViTMAE, the seq_len equals (number of patches + 1) * (1 - mask_ratio), rounded above
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                          patch_size[0])
        seq_len = int(math.ceil((1 - config.mask_ratio) * (num_patches + 1)))
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length",
                                     seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length",
                                     encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester,
                                                "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, chunk_length, encoder_key_length
                    ],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, encoder_key_length
                    ],
                )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions),
                             self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, chunk_length, encoder_key_length
                    ],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        encoder_seq_length, encoder_key_length
                    ],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers",
                self.model_tester.num_hidden_layers + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # ViTMAE has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                              patch_size[0])
            seq_length = int(
                math.ceil((1 - config.mask_ratio) * (num_patches + 1)))

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_save_load(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            # make random mask reproducible
            torch.manual_seed(2)
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
                model.to(torch_device)
                # make random mask reproducible
                torch.manual_seed(2)
                with torch.no_grad():
                    after_outputs = model(
                        **self._prepare_for_class(inputs_dict, model_class))

                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    @unittest.skip(
        reason=
        """ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
    to get deterministic results.""")
    def test_determinism(self):
        pass

    @unittest.skip(
        reason=
        """ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
    to get deterministic results.""")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(
        reason=
        """ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
    to get deterministic results.""")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(
        reason=
        """ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load"""
    )
    def test_model_outputs_equivalence(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTMAEModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 15
0
class OVAutoModelForQuestionAnswering(_BaseOVAutoModelClass):
    if is_torch_available():
        _pt_auto_model = AutoModelForQuestionAnswering
    if is_tf_available():
        _tf_auto_model = TFAutoModelForQuestionAnswering
Esempio n. 16
0
class BeitModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = ((BeitModel, BeitForImageClassification,
                          BeitForMaskedImageModeling)
                         if is_torch_available() else ())

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=BeitConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # BEiT does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING):
                continue
            # we don't test BeitForMaskedImageModeling
            if model_class.__name__ == "BeitForMaskedImageModeling":
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict,
                                             model_class,
                                             return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=
                        f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        # in BEiT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                          patch_size[0])
        seq_len = num_patches + 1
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length",
                                     seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length",
                                     encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester,
                                                "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads, encoder_seq_length,
                    encoder_key_length
                ],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions),
                             self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads, encoder_seq_length,
                    encoder_key_length
                ],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers",
                self.model_tester.num_hidden_layers + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # BEiT has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
                                                              patch_size[0])
            seq_length = num_patches + 1

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(
            *config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BeitModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 17
0
class OVAutoModelForSequenceClassification(_BaseOVAutoModelClass):
    if is_torch_available():
        _pt_auto_model = AutoModelForSequenceClassification
    if is_tf_available():
        _tf_auto_model = TFAutoModelForSequenceClassification
class PerceiverModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            PerceiverModel,
            PerceiverForMaskedLM,
            PerceiverForImageClassificationLearned,
            PerceiverForImageClassificationConvProcessing,
            PerceiverForImageClassificationFourier,
            PerceiverForOpticalFlow,
            PerceiverForMultimodalAutoencoding,
            PerceiverForSequenceClassification,
        )
        if is_torch_available()
        else ()
    )
    test_pruning = False
    test_head_masking = False
    test_torchscript = False

    maxDiff = None

    def setUp(self):
        self.model_tester = PerceiverModelTester(self)
        self.config_tester = ConfigTester(self, config_class=PerceiverConfig, hidden_size=37)

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)

        if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
            inputs_dict["subsampled_output_points"] = self.model_tester.subsampling

        if return_labels:
            if model_class in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
        return inputs_dict

    def test_config(self):
        # we don't test common_properties and arguments_init as these don't apply for Perceiver
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM)
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification)
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_for_image_classification_learned(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            model_class=PerceiverForImageClassificationLearned
        )
        self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs)

    def test_for_image_classification_fourier(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            model_class=PerceiverForImageClassificationFourier
        )
        self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs)

    def test_for_image_classification_conv(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            model_class=PerceiverForImageClassificationConvProcessing
        )
        self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs)

    def test_model_common_attributes(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            model = model_class(config)
            # we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter
            # and Perceiver doesn't support get_output_embeddings
            self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter))

    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
            if model_class in [
                *get_values(MODEL_MAPPING),
                PerceiverForOpticalFlow,
                PerceiverForMultimodalAutoencoding,
            ]:
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_forward_signature(self):
        for model_class in self.all_model_classes:
            config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["inputs"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_determinism(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]

            if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
                # model outputs a dictionary with logits per modality, let's verify each modality
                for modality in first.keys():
                    out_1 = first[modality].cpu().numpy()
                    out_2 = second[modality].cpu().numpy()
                    out_1 = out_1[~np.isnan(out_1)]
                    out_2 = out_2[~np.isnan(out_2)]
                    max_diff = np.amax(np.abs(out_1 - out_2))
                    self.assertLessEqual(max_diff, 1e-5)
            else:
                out_1 = first.cpu().numpy()
                out_2 = second.cpu().numpy()
                out_1 = out_1[~np.isnan(out_1)]
                out_2 = out_2[~np.isnan(out_2)]
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def test_attention_outputs(self):
        seq_len = getattr(self.model_tester, "num_latents", None)

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            config.return_dict = True

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            self_attentions = outputs.attentions
            cross_attentions = outputs.cross_attentions

            # check expected number of attentions depending on model class
            expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block
            if model.__class__.__name__ == "PerceiverModel":
                # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
                expected_num_cross_attentions = 1
            else:
                # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
                expected_num_cross_attentions = 2
            self.assertEqual(len(self_attentions), expected_num_self_attentions)
            self.assertEqual(len(cross_attentions), expected_num_cross_attentions)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            self_attentions = outputs.attentions
            cross_attentions = outputs.cross_attentions
            self.assertEqual(len(self_attentions), expected_num_self_attentions)
            self.assertEqual(len(cross_attentions), expected_num_cross_attentions)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_self_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), expected_num_self_attentions)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_self_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.num_latents

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.d_latents],
            )

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_model_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. "
                            f"Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. "
                            f"Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)

            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )

    def test_retain_grad_hidden_states_attentions(self):
        # no need to test all models as different heads yield the same functionality
        model_class = PerceiverForMaskedLM
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
        config.output_hidden_states = True
        config.output_attentions = True

        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        # Encoder-only model
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_feed_forward_chunking(self):
        for model_class in self.all_model_classes:
            original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
                # model outputs a dictionary with logits for each modality
                for modality in hidden_states_no_chunk.keys():
                    self.assertTrue(
                        torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3)
                    )
            else:
                self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

    def test_save_load(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
                for modality in outputs[0].keys():
                    out_2 = outputs[0][modality].cpu().numpy()
                    out_2[np.isnan(out_2)] = 0

                    with tempfile.TemporaryDirectory() as tmpdirname:
                        model.save_pretrained(tmpdirname)
                        model = model_class.from_pretrained(tmpdirname)
                        model.to(torch_device)
                        with torch.no_grad():
                            after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))

                        # Make sure we don't have nans
                        out_1 = after_outputs[0][modality].cpu().numpy()
                        out_1[np.isnan(out_1)] = 0
                        max_diff = np.amax(np.abs(out_1 - out_2))
                        self.assertLessEqual(max_diff, 1e-5)

            else:
                out_2 = outputs[0].cpu().numpy()
                out_2[np.isnan(out_2)] = 0

                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model = model_class.from_pretrained(tmpdirname)
                    model.to(torch_device)
                    with torch.no_grad():
                        after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))

                    # Make sure we don't have nans
                    out_1 = after_outputs[0].cpu().numpy()
                    out_1[np.isnan(out_1)] = 0
                    max_diff = np.amax(np.abs(out_1 - out_2))
                    self.assertLessEqual(max_diff, 1e-5)

    def test_correct_missing_keys(self):
        if not self.test_missing_keys:
            return
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # most Perceiver models don't have a typical head like is the case with BERT
            if model_class in [
                PerceiverForOpticalFlow,
                PerceiverForMultimodalAutoencoding,
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
                continue

            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

    def test_problem_types(self):
        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class)
            inputs_dict = dict(inputs=inputs, attention_mask=input_mask)

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )

                    loss.backward()

    @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
    def test_resize_embeddings_untied(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support the AutoModel API")
    def test_load_with_mismatched_shapes(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = PerceiverModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
class CLIPModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (CLIPModel, ) if is_torch_available() else ()
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPModelTester(self)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    # hidden_states are tested in individual model tests
    def test_hidden_states_output(self):
        pass

    # input_embeds are tested in individual model tests
    def test_inputs_embeds(self):
        pass

    # tested in individual model tests
    def test_retain_grad_hidden_states_attentions(self):
        pass

    # CLIPModel does not have input/output embeddings
    def test_model_common_attributes(self):
        pass

    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(
            config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict[
                    "pixel_values"]  # CLIP needs pixel_values
                traced_model = torch.jit.trace(model,
                                               (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()),
                             set(loaded_model_state_dict.keys()))

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    @slow
    def test_model_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 20
0
class DPTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        DPTModel, DPTForDepthEstimation,
        DPTForSemanticSegmentation) if is_torch_available() else ()

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DPTModelTester(self)
        self.config_tester = ConfigTester(self,
                                          config_class=DPTConfig,
                                          has_text_modality=False,
                                          hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # DPT does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_depth_estimation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_depth_estimation(
            *config_and_inputs)

    def test_for_semantic_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_semantic_segmentation(
            *config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )
        config.return_dict = True

        # in DPT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        seq_len = self.model_tester.expected_seq_length

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(len(outputs.attentions),
                             self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions),
                             self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions),
                             self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(
                    **self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers",
                self.model_tester.num_hidden_layers + 1)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # DPT has a different seq_length
            seq_len = self.model_tester.expected_seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_len, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_training(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
            )
            config.return_dict = True

            if model_class in get_values(MODEL_MAPPING):
                continue

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict,
                                             model_class,
                                             return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
            )
            config.use_cache = False
            config.return_dict = True

            if model_class in get_values(
                    MODEL_MAPPING
            ) or not model_class.supports_gradient_checkpointing:
                continue
            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict,
                                             model_class,
                                             return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @slow
    def test_model_from_pretrained(self):
        for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 21
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import SPIECE_UNDERLINE, BatchEncoding, T5Tokenizer, T5TokenizerFast
from transformers.file_utils import cached_property, is_torch_available
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers

from .test_tokenization_common import TokenizerTesterMixin

SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")

FRAMEWORK = "pt" if is_torch_available() else "tf"


@require_sentencepiece
@require_tokenizers
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = T5Tokenizer
    rust_tokenizer_class = T5TokenizerFast
    test_rust_tokenizer = True

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
Esempio n. 22
0
def retrieval_squad_convert_examples_to_features(
    examples,
    tokenizer,
    max_seq_length,
    max_query_length,
    max_answer_length,
    is_training,
    return_dataset,
    threads=1,
):
    """
    Converts a list of examples into a list of features that can be directly given as input to a model.
    It is model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.

    Args:
        examples: list of :class:`~transformers.data.processors.squad.SquadExample`
        tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer`
        max_seq_length: The maximum sequence length of the inputs.
        max_query_length: The maximum length of the query.
        max_answer_length: The maximum length of the answer and context.
        is_training: whether to create features for model evaluation or model training.
        return_dataset: Default False. Either 'pt' or 'tf'.
            if 'pt': returns a torch.data.TensorDataset,
            if 'tf': returns a tf.data.Dataset
        threads: multiple processing threads


    Returns:
        list of :class:`~transformers.data.processors.squad.SquadFeatures`

    Example::

        processor = SquadV2Processor()
        examples = processor.get_dev_examples(data_dir)

        features = squad_convert_examples_to_features(
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
        )
    """
    if return_dataset != 'pt':
        raise NotImplementedError(
            "Retrival Squad can only convert examples to pytorch features.")

    # Defining helper methods
    features = []
    threads = min(threads, cpu_count())
    with Pool(threads,
              initializer=squad_convert_example_to_features_init,
              initargs=(tokenizer, )) as p:
        annotate_ = partial(retrieval_squad_convert_example_to_features,
                            tokenizer=tokenizer,
                            max_seq_length=max_seq_length,
                            max_query_length=max_query_length,
                            max_answer_length=max_answer_length)
        features = list(
            tqdm(
                p.imap(annotate_, examples, chunksize=32),
                total=len(examples),
                desc="convert squad examples to features",
            ))
    new_features = []
    unique_id = 1000000000
    example_index = 0
    for example_features in tqdm(features,
                                 total=len(features),
                                 desc="add example index and unique id"):
        if not example_features:
            continue
        for example_feature in example_features:
            example_feature.example_index = example_index
            example_feature.unique_id = unique_id
            new_features.append(example_feature)
            unique_id += 1
        example_index += 1
    features = new_features
    del new_features
    if return_dataset == "pt":
        if not is_torch_available():
            raise RuntimeError(
                "PyTorch must be installed to return a PyTorch dataset.")

        # Convert to Tensors and build dataset
        q_input_ids = torch.tensor([f.q_input_ids for f in features],
                                   dtype=torch.long)
        q_attention_masks = torch.tensor(
            [f.q_attention_mask for f in features], dtype=torch.long)
        q_token_type_ids = torch.tensor([f.q_token_type_ids for f in features],
                                        dtype=torch.long)
        a_input_ids = torch.tensor([f.a_input_ids for f in features],
                                   dtype=torch.long)
        a_attention_masks = torch.tensor(
            [f.a_attention_mask for f in features], dtype=torch.long)
        a_token_type_ids = torch.tensor([f.a_token_type_ids for f in features],
                                        dtype=torch.long)
        # TODO more code here based on the model type (similar to logic in squad.py) because input features are different.
        if not is_training:
            all_example_index = torch.arange(q_input_ids.size(0),
                                             dtype=torch.long)
            dataset = TensorDataset(
                q_input_ids,
                q_attention_masks,
                q_token_type_ids,
                a_input_ids,
                a_attention_masks,
                a_token_type_ids,
                all_example_index  # Add all_example_index as a feature
            )
        else:
            dataset = TensorDataset(
                q_input_ids,
                q_attention_masks,
                q_token_type_ids,
                a_input_ids,
                a_attention_masks,
                a_token_type_ids,
            )
        return features, dataset
    elif return_dataset == "tf":
        raise NotImplementedError()

    return features
Esempio n. 23
0
    def get_features(
        self,
        tokenizer,
        max_length=None,
        pad_on_left=False,
        pad_token=0,
        mask_padding_with_zero=True,
        return_tensors=None,
    ):
        """
        Convert examples in a list of ``InputFeatures``

        Args:
            tokenizer: Instance of a tokenizer that will tokenize the examples
            max_length: Maximum example length
            task: GLUE task
            label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method
            output_mode: String indicating the output mode. Either ``regression`` or ``classification``
            pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default)
            pad_token: Padding token
            mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values
                and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for
                actual values)

        Returns:
            If the ``examples`` input is a ``tf.data_utils.Dataset``, will return a ``tf.data_utils.Dataset``
            containing the task-specific features. If the input is a list of ``InputExamples``, will return
            a list of task-specific ``InputFeatures`` which can be fed to the model.

        """
        if max_length is None:
            max_length = tokenizer.max_len

        label_map = {label: i for i, label in enumerate(self.labels)}

        all_input_ids = []
        for (ex_index, example) in enumerate(self.examples):
            if ex_index % 10000 == 0:
                logger.info("Tokenizing example %d", ex_index)

            input_ids = tokenizer.encode(
                example.text_a,
                add_special_tokens=True,
                max_length=min(max_length, tokenizer.max_len),
            )
            all_input_ids.append(input_ids)

        batch_length = max(len(input_ids) for input_ids in all_input_ids)

        features = []
        for (ex_index,
             (input_ids,
              example)) in enumerate(zip(all_input_ids, self.examples)):
            if ex_index % 10000 == 0:
                logger.info("Writing example %d", ex_index)
            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            attention_mask = [1 if mask_padding_with_zero else 0
                              ] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding_length = batch_length - len(input_ids)
            if pad_on_left:
                input_ids = ([pad_token] * padding_length) + input_ids
                attention_mask = ([0 if mask_padding_with_zero else 1] *
                                  padding_length) + attention_mask
            else:
                input_ids = input_ids + ([pad_token] * padding_length)
                attention_mask = attention_mask + (
                    [0 if mask_padding_with_zero else 1] * padding_length)

            assert len(
                input_ids
            ) == batch_length, "Error with input length {} vs {}".format(
                len(input_ids), batch_length)
            assert len(
                attention_mask
            ) == batch_length, "Error with input length {} vs {}".format(
                len(attention_mask), batch_length)

            if self.mode == "classification":
                label = label_map[example.label]
            elif self.mode == "regression":
                label = float(example.label)
            else:
                raise ValueError(self.mode)

            if ex_index < 5 and self.verbose:
                logger.info("*** Example ***")
                logger.info("guid: %s" % (example.guid))
                logger.info("input_ids: %s" %
                            " ".join([str(x) for x in input_ids]))
                logger.info("attention_mask: %s" %
                            " ".join([str(x) for x in attention_mask]))
                logger.info("label: %s (id = %d)" % (example.label, label))

            features.append(
                InputFeatures(input_ids=input_ids,
                              attention_mask=attention_mask,
                              label=label))

        if return_tensors is None:
            return features
        elif return_tensors == "tf":
            if not is_tf_available():
                raise RuntimeError(
                    "return_tensors set to 'tf' but TensorFlow 2.0 can't be imported"
                )
            import tensorflow as tf

            def gen():
                for ex in features:
                    yield ({
                        "input_ids": ex.input_ids,
                        "attention_mask": ex.attention_mask
                    }, ex.label)

            dataset = tf.data.Dataset.from_generator(
                gen,
                ({
                    "input_ids": tf.int32,
                    "attention_mask": tf.int32
                }, tf.int64),
                ({
                    "input_ids": tf.TensorShape([None]),
                    "attention_mask": tf.TensorShape([None])
                }, tf.TensorShape([])),
            )
            return dataset
        elif return_tensors == "pt":
            if not is_torch_available():
                raise RuntimeError(
                    "return_tensors set to 'pt' but PyTorch can't be imported")
            import torch
            from torch.utils.data import TensorDataset

            all_input_ids = torch.tensor([f.input_ids for f in features],
                                         dtype=torch.long)
            all_attention_mask = torch.tensor(
                [f.attention_mask for f in features], dtype=torch.long)
            if self.mode == "classification":
                all_labels = torch.tensor([f.label for f in features],
                                          dtype=torch.long)
            elif self.mode == "regression":
                all_labels = torch.tensor([f.label for f in features],
                                          dtype=torch.float)

            dataset = TensorDataset(all_input_ids, all_attention_mask,
                                    all_labels)
            return dataset
        else:
            raise ValueError("return_tensors should be one of 'tf' or 'pt'")
Esempio n. 24
0
class OVAutoModel(_BaseOVAutoModelClass):
    if is_torch_available():
        _pt_auto_model = AutoModel
    if is_tf_available():
        _tf_auto_model = TFAutoModel
Esempio n. 25
0
class CLIPModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (CLIPModel, ) if is_torch_available() else ()
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPModelTester(self)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    # hidden_states are tested in individual model tests
    def test_hidden_states_output(self):
        pass

    # input_embeds are tested in individual model tests
    def test_inputs_embeds(self):
        pass

    # tested in individual model tests
    def test_retain_grad_hidden_states_attentions(self):
        pass

    # CLIPModel does not have input/output embeddings
    def test_model_common_attributes(self):
        pass

    # override as the `logit_scale` parameter initilization is different for CLIP
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    # check if `logit_scale` is initilized as per the original implementation
                    if name == "logit_scale":
                        self.assertAlmostEqual(
                            param.data.item(),
                            np.log(1 / 0.07),
                            delta=1e-3,
                            msg=
                            f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=
                            f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(
            config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict[
                    "pixel_values"]  # CLIP needs pixel_values
                traced_model = torch.jit.trace(model,
                                               (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()),
                             set(loaded_model_state_dict.keys()))

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        # Save CLIPConfig and check if we can load CLIPVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(),
                                 vision_config.to_dict())

        # Save CLIPConfig and check if we can load CLIPTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = CLIPTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(),
                                 text_config.to_dict())

    # overwrite from common since CLIPModel/TFCLIPModel return CLIPOutput/TFCLIPOutput
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            config.output_hidden_states = True

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(
                inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

            pt_inputs = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs = {
                k: v
                for k, v in pt_inputs.items() if k in tf_input_keys
            }

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(
                        tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(
                        tensor.cpu().numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(
                        tensor.cpu().numpy(), dtype=tf.int32)

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model).to(torch_device)

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)
            tfo = tf_model(tf_inputs_dict, training=False)

            self.assertEqual(len(tfo), len(pto),
                             "Output lengths differ between TF and PyTorch")
            for tf_output, pt_output in zip(tfo.to_tuple(), pto.to_tuple()):

                if not (isinstance(tf_output, tf.Tensor)
                        and isinstance(pt_output, torch.Tensor)):
                    continue

                tf_out = tf_output.numpy()
                pt_out = pt_output.cpu().numpy()

                self.assertEqual(
                    tf_out.shape, pt_out.shape,
                    "Output component shapes differ between TF and PyTorch")

                if len(tf_out.shape) > 0:

                    tf_nans = np.copy(np.isnan(tf_out))
                    pt_nans = np.copy(np.isnan(pt_out))

                    pt_out[tf_nans] = 0
                    tf_out[tf_nans] = 0
                    pt_out[pt_nans] = 0
                    tf_out[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_out - pt_out))
                self.assertLessEqual(max_diff, 4e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path)
                pt_model = pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tensor = np.array(tensor, dtype=bool)
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor,
                                                               dtype=tf.int32)
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(
                        tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(
                        tensor.cpu().numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(
                        tensor.cpu().numpy(), dtype=tf.int32)

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)

            tfo = tf_model(tf_inputs_dict)

            self.assertEqual(len(tfo), len(pto),
                             "Output lengths differ between TF and PyTorch")
            for tf_output, pt_output in zip(tfo.to_tuple(), pto.to_tuple()):

                if not (isinstance(tf_output, tf.Tensor)
                        and isinstance(pt_output, torch.Tensor)):
                    continue

                tf_out = tf_output.numpy()
                pt_out = pt_output.cpu().numpy()

                self.assertEqual(
                    tf_out.shape, pt_out.shape,
                    "Output component shapes differ between TF and PyTorch")

                if len(tf_out.shape) > 0:
                    tf_nans = np.copy(np.isnan(tf_out))
                    pt_nans = np.copy(np.isnan(pt_out))

                    pt_out[tf_nans] = 0
                    tf_out[tf_nans] = 0
                    pt_out[pt_nans] = 0
                    tf_out[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_out - pt_out))
                self.assertLessEqual(max_diff, 4e-2)

    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(
                    fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {
                    k: v
                    for k, v in pt_inputs.items() if k in fx_input_keys
                }

                fx_state = convert_pytorch_state_dict_to_flax(
                    pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
                fx_inputs = {
                    k: np.array(v)
                    for k, v in pt_inputs.items() if torch.is_tensor(v)
                }
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs), len(pt_outputs),
                    "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs[:4],
                                                pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(),
                                              4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(
                        tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs),
                    "Output lengths differ between Flax and PyTorch")
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4],
                                                       pt_outputs[:4]):
                    self.assert_almost_equals(fx_output_loaded,
                                              pt_output.numpy(), 4e-2)

    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
        )

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(
                    fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(
                    pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {
                    k: v
                    for k, v in pt_inputs.items() if k in fx_input_keys
                }

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_inputs = {
                    k: np.array(v)
                    for k, v in pt_inputs.items() if torch.is_tensor(v)
                }

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs), len(pt_outputs),
                    "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs[:4],
                                                pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(),
                                              4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(
                        tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded),
                    "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs[:4],
                                                pt_outputs_loaded[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(),
                                              4e-2)

    @slow
    def test_model_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Esempio n. 26
0
class OVAutoModelForMaskedLM(_BaseOVAutoModelClass):
    if is_torch_available():
        _pt_auto_model = AutoModelForMaskedLM
    if is_tf_available():
        _tf_auto_model = TFAutoModelForMaskedLM
Esempio n. 27
0
class RagTestMixin:

    all_model_classes = (
        (RagModel, RagTokenForGeneration, RagSequenceForGeneration)
        if is_torch_available() and is_datasets_available() and is_faiss_available()
        else ()
    )

    retrieval_vector_size = 32
    n_docs = 3
    max_combined_length = 16

    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

        t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB)
        t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer")
        t5_tokenizer.save_pretrained(t5_tokenizer_path)

    @cached_property
    def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

    @cached_property
    def dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer:
        return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

    @cached_property
    def bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    @cached_property
    def t5_tokenizer(self) -> BartTokenizer:
        return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def get_retriever(self, config):
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1", "3"],
                "text": ["foo", "bar", "qux"],
                "title": ["Foo", "Bar", "Qux"],
                "embeddings": [
                    np.ones(self.retrieval_vector_size),
                    2 * np.ones(self.retrieval_vector_size),
                    3 * np.ones(self.retrieval_vector_size),
                ],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
        tokenizer = self.bart_tokenizer if config.generator.model_type == "bart" else self.t5_tokenizer
        with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
            mock_load_dataset.return_value = dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.dpr_tokenizer,
                generator_tokenizer=tokenizer,
            )
        return retriever

    def check_model_with_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

    def check_model_with_end2end_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        context_encoder_tokenizer = self.dpr_ctx_encoder_tokenizer
        dpr_context_encoder = DPRContextEncoder(config.question_encoder)  # dpr is a twin tower

        retriever = self.get_retriever(config)
        retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer)  # setting the ctx_encoder_tokenizer.

        for model_class in [RagTokenForGeneration, RagSequenceForGeneration]:
            model = model_class(config, retriever=retriever)
            model.set_context_encoder_for_training(dpr_context_encoder)  # set the context_encoder for training
            model.to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

    def check_model_generate_from_context_input_ids(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model.generate(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                do_deduplication=True,
            )

            self.assertIsNotNone(outputs)

    def check_model_generate(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes[1:]:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model.generate(
                input_ids=input_ids,
                num_beams=2,
                num_return_sequences=2,
                decoder_start_token_id=config.generator.eos_token_id,
            )

            self.assertIsNotNone(outputs)

    def check_model_without_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

    def check_model_custom_n_docs(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
                n_docs=n_docs,
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                n_docs=n_docs,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs))

    def check_model_with_mismatch_n_docs_value(
        self,
        config,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask,
        retriever_n_docs,
        generator_n_docs,
        **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
                n_docs=retriever_n_docs,
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            self.assertRaises(
                AssertionError,
                model.__call__,
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                n_docs=generator_n_docs,
            )

    def check_model_with_encoder_outputs(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            encoder_outputs = BaseModelOutput(outputs.generator_enc_last_hidden_state)

            # run only generator
            outputs = model(
                encoder_outputs=encoder_outputs,
                doc_scores=outputs.doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

    def test_model_with_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_retriever(**inputs_dict)

    def test_model_with_end2end_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_end2end_retriever(**inputs_dict)

    def test_model_without_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_without_retriever(**inputs_dict)

    def test_model_with_encoder_outputs(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_encoder_outputs(**inputs_dict)

    def test_model_generate(self):
        inputs_dict = self.config_and_inputs
        self.check_model_generate(**inputs_dict)

    def test_model_with_custom_n_docs(self):
        inputs_dict = self.config_and_inputs
        inputs_dict["n_docs"] = 1
        self.check_model_custom_n_docs(**inputs_dict)

    def test_model_with_mismatch_n_docs_value(self):
        inputs_dict = self.config_and_inputs
        inputs_dict["retriever_n_docs"] = 3
        inputs_dict["generator_n_docs"] = 2
        self.check_model_with_mismatch_n_docs_value(**inputs_dict)
Esempio n. 28
0
class OVAutoModelWithLMHead(_BaseOVAutoModelClass):
    if is_torch_available():
        _pt_auto_model = AutoModelWithLMHead
    if is_tf_available():
        _tf_auto_model = TFAutoModelWithLMHead
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, T5Tokenizer, T5TokenizerFast
from transformers.file_utils import cached_property, is_tf_available, is_torch_available
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers

from .test_tokenization_common import TokenizerTesterMixin

SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")

if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"


@require_sentencepiece
@require_tokenizers
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = T5Tokenizer
    rust_tokenizer_class = T5TokenizerFast
    test_rust_tokenizer = True
Esempio n. 30
0
    def batch_encode_plus(self,
                          batch_text_or_text_pairs,
                          add_special_tokens: bool = True,
                          max_length=None,
                          stride: int = 0,
                          truncation_strategy: str = "longest_first",
                          pad_to_max_length: bool = False,
                          return_tensors=None,
                          return_token_type_ids=None,
                          return_attention_masks=None,
                          return_overflowing_tokens: bool = False,
                          return_special_tokens_masks: bool = False,
                          return_offsets_mapping: bool = False,
                          return_input_lengths: bool = False,
                          **kwargs):
        def get_input_ids(text):
            if isinstance(text, str):
                tokens, word_mask = self.tokenize(
                    text, add_special_tokens=add_special_tokens, **kwargs)
                return self.convert_tokens_to_ids(tokens), word_mask
            elif isinstance(text,
                            (list, tuple)) and len(text) > 0 and isinstance(
                                text[0], str):
                return self.convert_tokens_to_ids(text)
            elif isinstance(text,
                            (list, tuple)) and len(text) > 0 and isinstance(
                                text[0], int):
                return text
            else:
                raise ValueError(
                    "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
                )

        # Throw an error if we can pad because there is no padding token
        if pad_to_max_length and self.pad_token_id is None:
            raise ValueError(
                "Unable to set proper padding strategy as the tokenizer does not have a padding token. In this case please set the `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` or add a new pad token via the function add_special_tokens if you want to use a padding strategy"
            )

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers."
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
                "More information on available tokenizers at "
                "https://github.com/huggingface/transformers/pull/2674")

        input_ids = []
        for ids_or_pair_ids in batch_text_or_text_pairs:
            if isinstance(ids_or_pair_ids,
                          (list, tuple)) and len(ids_or_pair_ids) == 2:
                ids, pair_ids = ids_or_pair_ids
            else:
                ids, pair_ids = ids_or_pair_ids, None

            first_ids, first_word_mask = get_input_ids(ids)
            second_ids, second_word_mask = get_input_ids(
                pair_ids) if pair_ids is not None else None
            input_ids.append(
                (first_ids, second_ids, first_word_mask, second_word_mask))

        if max_length is None and pad_to_max_length:

            def total_sequence_length(input_pairs):
                first_ids, second_ids, first_word_mask, second_word_mask = input_pairs
                return len(first_ids) + (
                    self.num_added_tokens() if second_ids is None else
                    (len(second_ids) + self.num_added_tokens(pair=True)))

            max_length = max([total_sequence_length(ids) for ids in input_ids])

        batch_outputs = {}
        for first_ids, second_ids, first_word_mask, second_word_mask in input_ids:
            outputs = self.prepare_for_model(
                first_ids,
                pair_ids=second_ids,
                max_length=max_length,
                pad_to_max_length=pad_to_max_length,
                add_special_tokens=add_special_tokens,
                stride=stride,
                truncation_strategy=truncation_strategy,
                return_attention_mask=return_attention_masks,
                return_token_type_ids=return_token_type_ids,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_masks,
            )
            outputs['word_mask'] = [0] + first_word_mask + [
                0
            ] + second_word_mask + [0]
            outputs['word_mask'] += [0] * (max_length -
                                           len(outputs['word_mask']))
            # Append the non-padded length to the output
            if return_input_lengths:
                outputs["input_len"] = len(outputs["input_ids"])

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        if return_tensors is not None:

            # Do the tensor conversion in batch
            for key, value in batch_outputs.items():
                if return_tensors == "pt" and is_torch_available():
                    try:
                        batch_outputs[key] = torch.tensor(value)
                    except ValueError:
                        raise ValueError(self.UNEVEN_SEQUENCES_FOR_BATCH_MSG)
                    except RuntimeError:
                        if None in [
                                item for sequence in value for item in sequence
                        ]:
                            raise ValueError(self.NO_PAD_TOKEN_FOR_BATCH_MSG)
                        else:
                            raise
                elif return_tensors is not None:
                    print(
                        "Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available."
                        .format(return_tensors))

        return batch_outputs