Esempio n. 1
0
 def load_model(self):
     self.tokenizer = BertTokenizer.from_pretrained(
         self.args.pretrained_path, do_lower_case=self.args.do_lower_case)
     self.config = BertConfig.from_pretrained(
         self.args.pretrained_path, num_labels=self.args.num_labels)
     if self.args.resume_model:
         self.model = BertForSequenceClassification.from_pretrained(
             self.args.resume_model_path, config=self.config)
     else:
         self.model = BertForSequenceClassification.from_pretrained(
             self.args.pretrained_path, config=self.config)
     if self.args.cuda:
         self.model.cuda()
         if self.args.n_gpus > 1:
             self.model = DataParallel(self.model)
 def __init__(self, n_bert_layers=N_LAYERS, n_features=N_FEATURES, extract_features=False):
     super(BERTForFeatures, self).__init__()
     self.extract_features = extract_features
     self.bert = BertForSequenceClassification.from_pretrained("bert-base-uncased")
     self.bert.bert.encoder.layer = self.bert.bert.encoder.layer[:n_bert_layers]
     self.bert.classifier = nn.Linear(768, n_features)
     self.cls = nn.Linear(n_features, 1)
    def setup_class(self):
        self.use_gpu = torch.cuda.is_available()
        self.test_dir = Path(tempfile.mkdtemp())

        self.base_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True,
                                                            cache_dir=self.test_dir)
        self.rust_tokenizer = PyBertTokenizer(
            get_from_cache(self.base_tokenizer.pretrained_vocab_files_map['vocab_file']['bert-base-uncased']))
        self.model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=False).eval()
        if self.use_gpu:
            self.model.cuda()
        self.sentence_list = ['For instance, on the planet Earth, man had always assumed that he was more intelligent '
                              'than dolphins because he had achieved so much—the wheel, New York, wars and so on—whilst'
                              ' all the dolphins had ever done was muck about in the water having a good time. But '
                              'conversely, the dolphins had always believed that they were far more intelligent than '
                              'man—for precisely the same reasons.'] * 64

        # Pre-allocate GPU memory
        tokens_list = [self.base_tokenizer.tokenize(sentence) for sentence in self.sentence_list]
        features = [self.base_tokenizer.convert_tokens_to_ids(tokens) for tokens in tokens_list]
        features = [self.base_tokenizer.prepare_for_model(input, None, add_special_tokens=True, max_length=128) for
                    input
                    in features]
        all_input_ids = torch.tensor([f['input_ids'] for f in features], dtype=torch.long)

        if self.use_gpu:
            all_input_ids = all_input_ids.cuda()

        with torch.no_grad():
            _ = self.model(all_input_ids)[0].cpu().numpy()
Esempio n. 4
0
def load_model(model_name, data_dir):
    processors = {
        "rte": RteProcessor
    }

    output_modes = {
        "rte": "classification"
    }
    # task_name = args.task_name.lower()
    task_name = 'rte'
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()  # [0,1]
    num_labels = len(label_list)
    pretrain_model_dir = '{}/FineTuneOn{}'.format(data_dir, model_name)
    # pretrain_model_dir = 'please enter your pretrain models path here/FineTuneOn{}'.format(model_name)
    # Prepare model
    # cache_dir = os.path.join(str(PYTORCH_TRANSFORMERS_CACHE), '{} model distributed_{}'.format(model_name, -1))
    # # cache_dir = os.path.join(str(PYTORCH_TRANSFORMERS_CACHE), '{} model distributed_{}'.format(model_name, -1))


    model = BertForSequenceClassification.from_pretrained(pretrain_model_dir, num_labels=num_labels)
    tokenizer = BertTokenizer.from_pretrained(pretrain_model_dir)
    # model = BertForSequenceClassification.from_pretrained('bert-base-uncased',
    #           cache_dir=cache_dir,
    #           num_labels=num_labels)
    # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
    # print(tokenizer)
    return model, tokenizer
Esempio n. 5
0
    def __init__(self, model_path, num_labels=2):
        model_file_path = utils.download_if_needed(model_path)
        self.model = BertForSequenceClassification.from_pretrained(
            model_file_path, num_labels=num_labels)

        self.model.to(utils.device)
        self.model.eval()
        self.tokenizer = BERTTokenizer(model_file_path)
    def __init__(self, hparams):
        super().__init__(hparams)

        # super light BERT model
        config = BertConfig(hidden_size=12,
                            num_hidden_layers=1,
                            num_attention_heads=1,
                            intermediate_size=12)
        self.model = BertForSequenceClassification(config)
 def from_pretrained(model_id_or_path: str,
                     device: Optional[torch.device] = None):
     # First, Use the function of from_pretrained to load the model you trained.
     torch_model = TorchBertForSequenceClassification.from_pretrained(
         model_id_or_path)
     # Then, Use the init function of the acceleration model to get it.
     model = BertForSequenceClassification.from_torch(torch_model, device)
     model._torch_model = torch_model  # prevent destroy torch model.
     return model
Esempio n. 8
0
 def __init__(self):
     # Googleの公開している事前学習済みのトークナイザとモデルをロード
     self.tokenizer = BertTokenizer.from_pretrained(
         "bert-base-multilingual-cased", do_lower_case=False)
     self.model = BertForSequenceClassification.from_pretrained(
         "bert-base-multilingual-cased", num_labels=2)
     # Google Colabでファインチューニングしたモデルをロード
     self.model.load_state_dict(
         torch.load("bert_evaluator.bin", map_location='cpu'))
Esempio n. 9
0
    def __init__(self, device, serial_model_path, par_model_path):
        self.device = device

        pretrained_path = 'cl-tohoku/bert-base-japanese-whole-word-masking'
        self.tokenizer = BertTokenizer.from_pretrained(pretrained_path,
                                                       do_lower_case=False)
        config = BertConfig.from_pretrained(pretrained_path)
        config.num_labels = 4
        self.serial_model = BertForSequenceClassification(config)
        config.num_labels = 2
        self.par_model = BertForSequenceClassification(config)

        self.serial_model.load_state_dict(torch.load(serial_model_path))
        self.serial_model.to(self.device)
        self.serial_model.eval()
        self.par_model.load_state_dict(torch.load(par_model_path))
        self.par_model.to(self.device)
        self.par_model.eval()
 def _create_task_model(self):
     bert_config = BertConfig(vocab_size=21128,
                              hidden_size=312,
                              num_hidden_layers=1,
                              num_attention_heads=4,
                              intermediate_size=1536,
                              max_position_embeddings=128)
     bert_tokenizer = BertTokenizer('../dataset/vocab.txt')
     bert_model = BertForSequenceClassification(bert_config)
     return TaskModel(bert_config, bert_tokenizer, bert_model)
Esempio n. 11
0
 def __init__(self, model_path, num_labels=2, entailment=False):
     model_file_path = utils.download_if_needed(model_path)
     self.model = BertForSequenceClassification.from_pretrained(
         model_file_path, num_labels=num_labels)
     self.model.to(utils.get_device())
     self.model.eval()
     if entailment:
         self.tokenizer = BERTEntailmentTokenizer()
     else:
         self.tokenizer = BERTTokenizer(model_file_path)
Esempio n. 12
0
    def __init__(self, hparams):
        super().__init__(hparams)

        # super light BERT model
        config = BertConfig(hidden_size=12,
                            num_hidden_layers=1,
                            num_attention_heads=1,
                            intermediate_size=12)
        self.model = BertForSequenceClassification(config)
        self.tokenizer = BertTokenizer.from_pretrained(
            "bert-base-cased", config=config, cache_dir=hparams.cache_dir)
Esempio n. 13
0
def get_bert_classifier(model_type: str,
                        num_labels: int,
                        model_file: str = None,
                        device: str = "cpu") -> BertForSequenceClassification:
    """
    Load a BertForSequenceClassification model, either from a model file with a finetuned
    model, or as a simple pretrained model.

    Args:
        model_type: the type of BERT model to load, e.g. "bert-base-uncased"
        num_labels: the number of cells for the output layer of the classifier
        model_file: if we load a finetuned model, this is the file where the model is saved
        device: the device to load the model to ("cpu" or "cuda")

    Returns: a BertForSequenceClassification model

    """
    if model_file:
        model_state_dict = torch.load(
            model_file, map_location=lambda storage, loc: storage)

        if "distilbert" in model_type:
            model = DistilBertForSequenceClassification.from_pretrained(
                model_type, state_dict=model_state_dict, num_labels=num_labels)
        else:
            model = BertForSequenceClassification.from_pretrained(
                model_type, state_dict=model_state_dict, num_labels=num_labels)
    else:
        if "distilbert" in model_type:
            model = DistilBertForSequenceClassification.from_pretrained(
                model_type, num_labels=num_labels)
        else:
            model = BertForSequenceClassification.from_pretrained(
                model_type, num_labels=num_labels)

    model.to(device)
    return model
Esempio n. 14
0
    def __init__(self, label_list, device, cache_dir):
        self._label_list = label_list
        self._device = device

        self._tokenizer = BertTokenizer.from_pretrained(BERT_MODEL,
                                                        do_lower_case=True,
                                                        cache_dir=cache_dir)

        self._model = BertForSequenceClassification.from_pretrained(
            BERT_MODEL, num_labels=len(label_list), cache_dir=cache_dir)
        self._model.to(device)

        self._optimizer = None

        self._dataset = {}
        self._data_loader = {}
def bertForSequenceClassification(*args, **kwargs):
    """
    BertForSequenceClassification is a fine-tuning model that includes
    BertModel and a sequence-level (sequence or pair of sequences) classifier
    on top of the BertModel. Note that the classification head is only initialized
    and has to be trained.

    The sequence-level classifier is a linear layer that takes as input the
    last hidden state of the first character in the input sequence
    (see Figures 3a and 3b in the BERT paper).

    Args:
    num_labels: the number (>=2) of classes for the classifier.

    Example:
        # Load the tokenizer
        >>> import torch
        >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
        #  Prepare tokenized input
        >>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
        >>> tokenized_text = tokenizer.tokenize(text)
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
        >>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
        >>> tokens_tensor = torch.tensor([indexed_tokens])
        >>> segments_tensors = torch.tensor([segments_ids])
        # Load bertForSequenceClassification
        >>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
        >>> model.eval()
        # Predict the sequence classification logits
        >>> with torch.no_grad():
                seq_classif_logits = model(tokens_tensor, segments_tensors)
        # Or get the sequence classification loss
        >>> labels = torch.tensor([1])
        >>> seq_classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
    """
    model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
    return model
Esempio n. 16
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--train_data_dir",
        default='./',
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--test_data_dir",
        default='./',
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default='bert-base-uncased',
        type=str,
        required=False,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default='ci_evaluation',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default="./saves/",
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    ## Other parameters
    parser.add_argument(
        "--load_model",
        action='store_true',
        help="Whether to load a fine-tuned model from output directory.")
    parser.add_argument(
        "--model_name",
        default=None,
        type=str,
        help=
        "The name of the model to load, relevant only in case that load_model is positive."
    )
    parser.add_argument("--load_model_path",
                        default='./saves/pytorch_model.bin',
                        type=str,
                        help="Path to directory containing fine-tuned model.")
    parser.add_argument(
        "--save_on_epoch_end",
        action='store_true',
        help="Whether to save the weights each time an epoch ends.")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--N_train",
                        type=int,
                        default=-1,
                        help="number of training examples")
    parser.add_argument("--N_dev",
                        type=int,
                        default=-1,
                        help="number of development examples")
    parser.add_argument(
        "--save_best_weights",
        type=bool,
        default=True,
        help="saves model weight each time epoch accuracy is maximum")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=5,
                        type=int,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--save_according_to',
        type=str,
        default='acc',
        help="save results according to in domain dev acc or in domain dev loss"
    )
    parser.add_argument('--optimizer',
                        type=str,
                        default='adam',
                        help="which optimizer model to use: adam or sgd")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument('--data_type',
                        type=str,
                        default='sports',
                        help="Evaluate classifier on sports or wiki")
    parser.add_argument(
        "--soph_flag",
        action='store_true',
        help="Evaluate on sophisticated examples or not (unsophisticated).")
    parser.add_argument(
        "--generation_flag",
        action='store_true',
        help=
        "Evaluate on original examples or caunterfactuals (generated ones).")

    args = parser.parse_args()

    processors = {
        "sentiment": DiscoFuseProcessor,
        "ci_evaluation": GeneratedDiscoFuseProcessor,
    }

    output_modes = {
        "sentiment": "classification",
        "ci_evaluation": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    print("device: {} n_gpu: {}, distributed training: {}".format(
        device, n_gpu, bool(args.local_rank != -1)))

    print("learning rate: {}, batch size: {}".format(args.learning_rate,
                                                     args.train_batch_size))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.load_model:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(
            args.output_dir) and args.task_name != "ci_evaluation":
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.train_data_dir)
        train_examples = train_examples[:args.
                                        N_train] if args.N_train > 0 else train_examples
        num_train_optimization_steps = int(
            len(train_examples) / train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Load a trained model and vocabulary that you have fine-tuned
    if args.load_model or args.load_model_path != '':

        # path to directory to load from fine-tuned model
        load_path = args.load_model_path if args.load_model_path != '' else args.output_dir
        cache_dir = args.cache_dir if args.cache_dir else os.path.join(
            str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
                args.local_rank))

        if task_name == 'sentiment' or task_name == 'ci_evaluation':
            model = BertForSequenceClassification.from_pretrained(
                args.bert_model,
                cache_dir=args.cache_dir,
                num_labels=num_labels)
        else:
            print('Error! no task named: {}'.format(task_name))
            exit()

        # load pre train modek weights
        if args.load_model_path is not None:
            print("--- Loading model:", args.load_model_path)
            model.load_state_dict(torch.load(args.load_model_path),
                                  strict=False)
        else:
            model.load_state_dict(torch.load(
                os.path.join(load_path, "pytorch_model.bin")),
                                  strict=False)

        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        if not tokenizer:
            tokenizer = BertTokenizer.from_pretrained(
                args.bert_model, do_lower_case=args.do_lower_case)
        model.to(device)

    else:
        cache_dir = args.cache_dir if args.cache_dir else os.path.join(
            str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
                args.local_rank))

        if task_name == "sentiment":
            model = BertForSequenceClassification.from_pretrained(
                args.bert_model,
                cache_dir=args.cache_dir,
                num_labels=num_labels)
        else:
            print('Error! no task named: {}'.format(task_name))
            exit()

        tokenizer = BertTokenizer.from_pretrained(
            args.bert_model, do_lower_case=args.do_lower_case)
        model.to(device)

    if args.local_rank != -1:
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = model.named_parameters()
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if args.optimizer == 'adam':
            optimizer = AdamW(optimizer_grouped_parameters,
                              lr=args.learning_rate)
        elif args.optimizer == 'sgd':
            optimizer = torch.optim.sgd(model.parameters(),
                                        lr=args.learning_rate,
                                        weight_decay=1e-2)
        # scheduler = ReduceLROnPlateau(optimizer, 'min',
        #                               patience=hparams.reduce_lr_on_plateau_patience,
        #                               factor=hparams.reduce_lr_on_plateau_factor, verbose=True)

    global_step = 0

    # prepare dev-set evaluation DataLoader
    # if do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
    if task_name == 'ci_evaluation':
        eval_dataloader = make_DataLoader(data_dir=args.test_data_dir,
                                          processor=processor,
                                          tokenizer=tokenizer,
                                          label_list=label_list,
                                          max_seq_length=args.max_seq_length,
                                          batch_size=args.eval_batch_size,
                                          output_mode=output_mode,
                                          local_rank=args.local_rank,
                                          mode="dev",
                                          N=args.N_dev,
                                          data_type=args.data_type,
                                          soph_flag=soph_flag,
                                          generation_flag=generation_flag)
    else:
        eval_dataloader = make_DataLoader(data_dir=args.test_data_dir,
                                          processor=processor,
                                          tokenizer=tokenizer,
                                          label_list=label_list,
                                          max_seq_length=args.max_seq_length,
                                          batch_size=args.eval_batch_size,
                                          output_mode=output_mode,
                                          local_rank=args.local_rank,
                                          mode="dev",
                                          N=args.N_dev)

    if args.do_train:
        # prepare training DataLoader
        train_dataloader = make_DataLoader(data_dir=args.train_data_dir,
                                           processor=processor,
                                           tokenizer=tokenizer,
                                           label_list=label_list,
                                           max_seq_length=args.max_seq_length,
                                           batch_size=train_batch_size,
                                           output_mode=output_mode,
                                           local_rank=args.local_rank,
                                           mode="train",
                                           N=args.N_train)
        model.train()

        # main training loop
        best_dev_acc = 0.0
        best_dev_loss = 100000.0

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):

            tr_loss = 0
            tr_acc = 0

            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch[:4]

                # define a new function to compute loss values for both output_modes
                outputs = model(input_ids,
                                segment_ids,
                                input_mask,
                                labels=None)
                logits = outputs[0]
                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss(ignore_index=-1)
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                    preds = logits.detach().cpu().numpy()
                    preds = np.argmax(preds, axis=1)
                    tr_acc += compute_metrics(
                        task_name, preds,
                        label_ids.detach().cpu().numpy())["acc"]

                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            # run evaluation on dev set
            # dev-set loss
            eval_results_dev = evaluate(eval_dataloader=eval_dataloader,
                                        model=model,
                                        device=device,
                                        tokenizer=tokenizer,
                                        output_mode=output_mode,
                                        num_labels=num_labels)

            dev_acc, dev_loss = eval_results_dev[:2]

            # train-set loss
            tr_loss /= nb_tr_steps
            tr_acc /= nb_tr_steps

            # print and save results
            result = {
                "acc": tr_acc,
                "loss": tr_loss,
                "dev_acc": dev_acc,
                "dev_loss": dev_loss
            }

            print('Epoch {}'.format(epoch + 1))
            for key, val in result.items():
                print("{}: {}".format(key, val))

            print("***** Evaluation results *****")
            for key in sorted(result.keys()):
                print("  %s = %s", key, str(result[key]))

            # Save model, configuration and tokenizer on the first epoch
            # If we save using the predefined names, we can load using `from_pretrained`
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            if epoch == 0:
                output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
                model_to_save.config.to_json_file(output_config_file)
                tokenizer.save_vocabulary(args.output_dir)

            if args.save_on_epoch_end:
                # Save a trained model
                output_model_file = os.path.join(
                    args.output_dir,
                    WEIGHTS_NAME + '.Epoch_{}'.format(epoch + 1))
                torch.save(model_to_save.state_dict(), output_model_file)

            # save model with best performance on dev-set
            if args.save_best_weights and dev_acc > best_dev_acc:
                print("Saving model, accuracy improved from {} to {}".format(
                    best_dev_acc, dev_acc))
                output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
                torch.save(model_to_save.state_dict(), output_model_file)
                best_dev_acc = dev_acc

            if args.save_according_to == 'acc':
                if dev_acc > best_dev_acc:
                    best_dev_acc = dev_acc

            elif args.save_according_to == 'loss':
                if dev_loss < best_dev_loss:
                    best_dev_loss = dev_loss

            if args.save_according_to == 'acc':
                print('Best results: Acc - {}'.format(best_dev_acc))
            elif args.save_according_to == 'loss':
                print('Best results: Loss - {}'.format(best_dev_loss))
            if args.model_name is not None:
                final_output_eval_file = os.path.join(
                    args.output_dir,
                    args.model_name + "-final_eval_results.txt")
            else:
                final_output_eval_file = os.path.join(
                    args.output_dir, "final_eval_results.txt")

    elif args.do_eval and (args.local_rank == -1
                           or torch.distributed.get_rank() == 0):
        # dev-set loss
        eval_results_dev = evaluate(eval_dataloader=eval_dataloader,
                                    model=model,
                                    device=device,
                                    tokenizer=tokenizer,
                                    output_mode=output_mode,
                                    num_labels=num_labels)
        print("eval_results_dev -", eval_results_dev)

        dev_acc, dev_loss = eval_results_dev[:2]
        # print results
        print('Accuracy: {}'.format(dev_acc))
        print('Loss: {}'.format(dev_loss))

    else:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

# use 4 threads for BERT inference
turbo_transformers.set_num_threads(4)

model_id = os.path.join(os.path.dirname(__file__),
                        "bert_model")  # the model of huggingface's path
tokenizer = BertTokenizer.from_pretrained(
    model_id)  # the initialization of tokenizer
turbo_model = BertForSequenceClassification.from_pretrained(
    model_id,
    torch.device("cpu:0"))  # the initialization of the acceleration model

# predict after loading the model

text = "Sample input text"
inputs = tokenizer.encode_plus(text,
                               add_special_tokens=True,
                               return_tensors="pt")
# turbo_result holds the returned logits from TurboTransformers model
turbo_result = turbo_model(**inputs)

torch_model = TorchBertForSequenceClassification.from_pretrained(model_id)
# torch_result holds the returned logits from original Transformers model
torch_result = torch_model(**inputs)[0]
print(turbo_result)
# tensor([[0.2716, 0.0318]], grad_fn=<AddmmBackward>)
print(
    torch_result)  # torch_result and turbo_result should hold the same logits
# tensor([[0.2716, 0.0318]], grad_fn=<AddmmBackward>)
Esempio n. 18
0
import torch
from keras.preprocessing.sequence import pad_sequences

if torch.cuda.is_available():
    device = torch.device("cuda")
    print('There are %d GPU(s) available.' % torch.cuda.device_count())
    print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
    device = torch.device("cpu")
    print('No GPU available, using the CPU instead.')

#모델 저장된 경로
output_dir = './model_save4/'

# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(output_dir)
tokenizer = BertTokenizer.from_pretrained(output_dir)

# Copy the model to the GPU.
model.to(device)


def convert_input_data(sentences):

    # BERT의 토크나이저로 문장을 토큰으로 분리
    tokenized_texts = [tokenizer.tokenize(sent) for sent in sentences]

    # 입력 토큰의 최대 시퀀스 길이
    MAX_LEN = 512

    # 토큰을 숫자 인덱스로 변환
Esempio n. 19
0
class BertEvaluator:
    def __init__(self, device, serial_model_path, par_model_path):
        self.device = device

        pretrained_path = 'cl-tohoku/bert-base-japanese-whole-word-masking'
        self.tokenizer = BertTokenizer.from_pretrained(pretrained_path,
                                                       do_lower_case=False)
        config = BertConfig.from_pretrained(pretrained_path)
        config.num_labels = 4
        self.serial_model = BertForSequenceClassification(config)
        config.num_labels = 2
        self.par_model = BertForSequenceClassification(config)

        self.serial_model.load_state_dict(torch.load(serial_model_path))
        self.serial_model.to(self.device)
        self.serial_model.eval()
        self.par_model.load_state_dict(torch.load(par_model_path))
        self.par_model.to(self.device)
        self.par_model.eval()

    def evaluate(self, user_input, candidate):
        with torch.no_grad():
            tokenized = self.tokenizer([[user_input, candidate]],
                                       return_tensors="pt")
            input_ids = tokenized["input_ids"].to(self.device)
            token_type_ids = tokenized["token_type_ids"].to(self.device)

            result_serial = self.serial_model.forward(
                input_ids, token_type_ids=token_type_ids)
            _, predicted = torch.max(result_serial[0], 1)
            result_serial = predicted.cpu().numpy().tolist()

            result_par = self.par_model.forward(input_ids,
                                                token_type_ids=token_type_ids)
            result_par = F.softmax(result_par[0], dim=1)
            result_par = result_par[0].cpu().numpy().tolist()

            return result_serial, result_par
Esempio n. 20
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument("--data_dir",
                        default='./data/input/',
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default='bert-base-chinese', type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                             "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--config_file", default='bert-base-chinese', type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                             "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default='xgfy',
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--vacab_root",
                        default='./data/model/',
                        type=str,
                        required=True,
                        help="The directory where the vocab file is saved.")
                        
    parser.add_argument("--output_dir",
                        default='./data/output/',
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--weight_name",
                        default='net_weight_1.bin',
                        type=str,
                        )
    parser.add_argument("--config_name",
                        default='config_name_1.bin',
                        type=str,
                        )
    # Other parameters
    parser.add_argument("--cache_dir",
                        default="./data/model/",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--log_frq",
                        default=50,
                        type=int)
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=1.0,
                        type=int,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--n_warmup",
                        default=1000,
                        type=int,
                        help="step of training to perform linear learning rate warmup for.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--parall',
                        action='store_true')
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    args = parser.parse_args()


    # 新冠肺炎
    processors = {
        "xgfy": SimProcessor
    }

    num_labels_task = {
        "xgfy": 2,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda:0" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        # torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    # if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
    #     raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    # if not os.path.exists(args.output_dir):
    #     os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.vacab_root, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{0}')
    # cache_dir = args.cache_dir if args.cache_dir else os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(str(args.local_rank)))
    config = BertConfig.from_pretrained(args.config_file, num_labels=num_labels)
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
                                                          config=config,
                                                          cache_dir=cache_dir)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1 and args.parall:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)


    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
        
        
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=args.n_warmup, num_training_steps=t_total
        )
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
                if n_gpu > 1 and args.parall:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    scheduler.step()
                    optimizer.zero_grad()
                    global_step += 1
                    if (global_step) % args.log_frq == 0:
                        logger.info("TrLoss: {:.2f} | Loss: {:.2f} | Lr: {:.2f}".format(tr_loss, loss.item(), scheduler.get_lr()[0]))

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, args.weight_name)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, args.config_name)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config)
        model.load_state_dict(torch.load(output_model_file))
    else:
        output_model_file = os.path.join(args.output_dir, args.weight_name)
        output_config_file = os.path.join(args.output_dir, args.config_name)
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config)
        model.load_state_dict(torch.load(output_model_file))
        # model = BertForSequenceClassification.from_pretrained(args.bert_model)
    model.to(device)

    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  'loss': loss}
        logger.info(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
Esempio n. 21
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    '''
    python -u demo.py
    '''
    parser.add_argument("--premise_str",
                        default=None,
                        type=str,
                        required=True,
                        help="text to classify")
    parser.add_argument("--hypo_list",
                        default=None,
                        type=str,
                        required=True,
                        help="sentences separated by |")
    parser.add_argument("--task_name",
                        default='rte',
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    # parser.add_argument("--do_lower_case",
    #                     action='store_true',
    #                     help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=256,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    processors = {"rte": RteProcessor}

    output_modes = {"rte": "classification"}

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()  #[0,1]
    num_labels = len(label_list)

    train_examples = None

    # Prepare model
    # cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_TRANSFORMERS_CACHE), 'distributed_{}'.format(args.local_rank))
    # model = BertForSequenceClassification.from_pretrained(args.bert_model,
    #           cache_dir=cache_dir,
    #           num_labels=num_labels)
    # tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    pretrain_model_dir = '/export/home/Dataset/fine_tune_Bert_stored/FineTuneOnRTE'  #FineTuneOnCombined'# FineTuneOnMNLI
    model = BertForSequenceClassification.from_pretrained(
        pretrain_model_dir, num_labels=num_labels)
    tokenizer = BertTokenizer.from_pretrained(pretrain_model_dir)

    model.to(device)

    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    # param_optimizer = list(model.named_parameters())
    # no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    # optimizer_grouped_parameters = [
    #     {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
    #     {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    #     ]
    # optimizer = AdamW(optimizer_grouped_parameters,
    #                          lr=args.learning_rate)
    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    max_test_unseen_acc = 0.0
    max_dev_unseen_acc = 0.0
    max_dev_seen_acc = 0.0
    max_overall_acc = 0.0
    '''load test set'''

    seen_types = set()
    # test_examples, test_label_list, test_hypo_seen_str_indicator, test_hypo_2_type_index = processor.get_examples_Yahoo_test('/export/home/Dataset/YahooClassification/yahoo_answers_csv/zero-shot-split/test.txt', seen_types)
    # test_examples = load_demo_input(premise_str, hypo_list)
    # test_examples = load_demo_input('f**k why my email not come yet', ['anger', 'this text expresses anger', 'the guy is very unhappy'])
    test_examples = load_demo_input(args.premise_str,
                                    args.hypo_list.split(' | '))
    test_features = convert_examples_to_features(test_examples, label_list,
                                                 args.max_seq_length,
                                                 tokenizer, output_mode)

    test_all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                      dtype=torch.long)
    test_all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                       dtype=torch.long)
    test_all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                        dtype=torch.long)
    test_all_label_ids = torch.tensor([f.label_id for f in test_features],
                                      dtype=torch.long)

    test_data = TensorDataset(test_all_input_ids, test_all_input_mask,
                              test_all_segment_ids, test_all_label_ids)
    test_sampler = SequentialSampler(test_data)
    test_dataloader = DataLoader(test_data,
                                 sampler=test_sampler,
                                 batch_size=args.eval_batch_size)
    '''
    start evaluate on test set after this epoch
    '''
    model.eval()

    logger.info("***** Running testing *****")
    logger.info("  Num examples = %d", len(test_examples))
    logger.info("  Batch size = %d", args.eval_batch_size)

    test_loss = 0
    nb_test_steps = 0
    preds = []
    # print('Testing...')
    for input_ids, input_mask, segment_ids, label_ids in test_dataloader:
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)
        label_ids = label_ids.to(device)

        with torch.no_grad():
            logits = model(input_ids, segment_ids, input_mask, labels=None)
        logits = logits[0]
        if len(preds) == 0:
            preds.append(logits.detach().cpu().numpy())
        else:
            preds[0] = np.append(preds[0],
                                 logits.detach().cpu().numpy(),
                                 axis=0)

    # eval_loss = eval_loss / nb_eval_steps
    preds = preds[0]
    pred_probs = softmax(preds, axis=1)[:, 0]
    return max(pred_probs)
Esempio n. 22
0
test_papers = papers[-200:]

print("BUILDING TRAIN DATA...")
train_iterator, num_train_examples = get_dataloader(
    ARGS.people, train_papers, tokenizer, ARGS.batch_size, 
    ARGS.working_dir + '/data_cache.train.pkl', test=False)
print('DONE. %d EXAMPLES' % num_train_examples)
print("BUILDING TEST DATA...")
test_iterator, num_test_examples = get_dataloader(
    ARGS.people, test_papers, tokenizer, ARGS.batch_size, 
    ARGS.working_dir + '/data_cache.test.pkl', 
    test=True)
print('DONE. %d EXAMPLES' % num_test_examples)

model = BertForSequenceClassification.from_pretrained(
    'bert-base-uncased',
    cache_dir=ARGS.working_dir + '/cache')
if CUDA:
    model = model.cuda()


optimizer, scheduler = build_optimizer_scheduler(
    model, int((num_train_examples * ARGS.epochs) / ARGS.batch_size),
    ARGS.learning_rate)

loss_fn = build_loss_fn()

for epoch in range(ARGS.epochs):
    while True:
        print('TRAIN %d' % epoch)
        model.train()
Esempio n. 23
0
def predict(options):

    qid_lst, x_row, y_lst = [], [], []
    read_file = open(options.data_file, 'rb')
    read_file.readline()
    for line in read_file:
        line = line.decode('utf-8', 'ignore')
        line_split = line.strip('\n').split('|')
        x_row.append(line_split[1])
        y_lst.append(int(line_split[0]))
    # for line in read_file:
    #     line = line.decode('utf-8', 'ignore')
    #     line_split = line.strip('\n').strip('\r').split('\t')
    #     qid_lst.append(line_split[0])
    #     x_row.append(line_split[1])
    #     if len(line_split) >=3:
    #         y_lst.append(int(line_split[-1]))
    read_file.close()
    x_test_text, y_test = np.array(x_row), np.array(y_lst)
    print("test text shape is ", x_test_text.shape)
    print('Loading BERT tokenizer...')
    tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
    MAX_LEN = 180

    test_input_ids = [
        tokenizer.encode(sent, add_special_tokens=True, max_length=MAX_LEN)
        for sent in x_test_text
    ]
    test_input_ids = pad_sequences(test_input_ids,
                                   maxlen=MAX_LEN,
                                   dtype="long",
                                   value=0,
                                   truncating="post",
                                   padding="post")
    test_attention_masks = []
    for sent in test_input_ids:
        att_mask = [int(token_id > 0) for token_id in sent]
        test_attention_masks.append(att_mask)
    test_inputs = torch.tensor(test_input_ids)
    test_masks = torch.tensor(test_attention_masks)

    batch_size = 2
    # Create the DataLoader for our test set.
    test_data = TensorDataset(test_inputs, test_masks)
    test_sampler = SequentialSampler(test_data)
    test_dataloader = DataLoader(test_data,
                                 sampler=test_sampler,
                                 batch_size=batch_size)
    model = BertForSequenceClassification.from_pretrained(
        "bert-base-chinese",
        num_labels=5,
        output_attentions=False,
        output_hidden_states=False,
    )

    # Tell pytorch to run this model on the GPU.
    """加载模型"""

    model.load_state_dict(torch.load(options.model_file))
    model.cuda()
    all_predictions = []
    model.eval()
    for step, batch in enumerate(test_dataloader):
        if step % 40 == 0 and not step == 0:
            print('  Batch {:>5,}  of  {:>5,}.'.format(step,
                                                       len(test_dataloader)))
        batch = tuple(t.to(device) for t in batch)
        b_input_ids, b_input_mask = batch
        with torch.no_grad():
            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask)

        logits = outputs[0]
        logits = logits.detach().cpu().numpy()
        pred_flat = np.argmax(logits, axis=1).flatten()
        all_predictions.extend(pred_flat)

    if len(y_test) > 0:
        eps = 1e-3

        TP, FP, FN = 0, 0, 0
        for i in range(len(all_predictions)):
            if all_predictions[i] == y_test[i] and y_test[i] != 0:
                TP += 1
            elif all_predictions[i] == 0 and y_test[i] != 0:
                FN += 1
            elif all_predictions[i] != 0 and y_test[i] == 0:
                FP += 1
        if abs(TP + FP) < eps:
            P = 0.
        else:
            P = float(TP) / float(TP + FP)
        if abs(TP + FP) < eps:
            R = 0.
        else:
            R = float(TP) / float(TP + FN)
        if abs(P) < eps and abs(R) < eps:
            F1 = 0.
        else:
            F1 = 4 * P * R / (P + 3 * R)
        print("TP is ", TP)
        print("FP is ", FP)
        print("FN is ", FN)
        print("Total number of test examples: {}".format(len(y_test)))
        print("P is ", P)
        print("R is ", R)
        print("Score is ", F1)

    print("predict start.......")
    ###################################
    # 预测逻辑和结果输出,("%d\t%s\t%d", qid, content, predict_label)
    ###################################
    print("Saving evaluation to {0}".format(options.out_put_file))
    output_file = open(options.out_put_file, 'wb')
    output_file.write("qid\ttext\tlabel\n".encode("utf-8"))
    for i in range(len(all_predictions)):
        # output_file.write((qid_lst[i]+'\t'+x_row[i]+'\t'+str(int(all_predictions[i]))+'\n').encode('utf-8', 'ignore'))
        output_file.write(
            (x_row[i] + '\t' + str(int(all_predictions[i])) + '\n').encode(
                'utf-8', 'ignore'))
    output_file.close()
    print("predict end.......")

    return None
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=256,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    # if args.server_ip and args.server_port:
    #     # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
    #     import ptvsd
    #     print("Waiting for debugger attach")
    #     ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
    #     ptvsd.wait_for_attach()

    processors = {
        # "cola": ColaProcessor,
        # "mnli": MnliProcessor,
        # "mnli-mm": MnliMismatchedProcessor,
        # "mrpc": MrpcProcessor,
        # "sst-2": Sst2Processor,
        # "sts-b": StsbProcessor,
        # "qqp": QqpProcessor,
        # "qnli": QnliProcessor,
        "rte": RteProcessor
        # "wnli": WnliProcessor,
    }

    output_modes = {
        # "cola": "classification",
        # "mnli": "classification",
        # "mrpc": "classification",
        # "sst-2": "classification",
        # "sts-b": "regression",
        # "qqp": "classification",
        # "qnli": "classification",
        "rte": "classification"
        # "wnli": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()  #[0,1]
    num_labels = len(label_list)

    train_examples = None
    # num_train_optimization_steps = None
    # if args.do_train:
    #     # train_examples = processor.get_train_examples_wenpeng('/home/wyin3/Datasets/glue_data/RTE/train.tsv')
    #     train_examples, seen_types = processor.get_examples_situation_train('/export/home/Dataset/LORELEI/zero-shot-split/train_pu_half_v0.txt') #train_pu_half_v1.txt
    #     # seen_classes=[0,2,4,6,8]
    #
    #     num_train_optimization_steps = int(
    #         len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
    #     if args.local_rank != -1:
    #         num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_TRANSFORMERS_CACHE), 'distributed_{}'.format(
            args.local_rank))

    pretrain_model_dir = '/export/home/Dataset/fine_tune_Bert_stored/FineTuneOnMNLI'  #FineTuneOnCombined'# FineTuneOnMNLI, FineTuneOnFEVER, FineTuneOnRTE
    model = BertForSequenceClassification.from_pretrained(
        pretrain_model_dir, num_labels=num_labels)
    tokenizer = BertTokenizer.from_pretrained(pretrain_model_dir,
                                              do_lower_case=args.do_lower_case)

    if args.fp16:
        model.half()
    model.to(device)

    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    max_test_unseen_acc = 0.0
    max_dev_unseen_acc = 0.0
    max_dev_seen_acc = 0.0
    max_overall_acc = 0.0
    '''load test set'''
    seen_types = set()
    test_examples, test_label_list, test_hypo_seen_str_indicator, test_hypo_2_type_index = processor.get_examples_situation_test(
        '/export/home/Dataset/LORELEI/zero-shot-split/test.txt', seen_types)
    test_features = convert_examples_to_features(test_examples, label_list,
                                                 args.max_seq_length,
                                                 tokenizer, output_mode)

    test_all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                      dtype=torch.long)
    test_all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                       dtype=torch.long)
    test_all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                        dtype=torch.long)
    test_all_label_ids = torch.tensor([f.label_id for f in test_features],
                                      dtype=torch.long)

    test_data = TensorDataset(test_all_input_ids, test_all_input_mask,
                              test_all_segment_ids, test_all_label_ids)
    test_sampler = SequentialSampler(test_data)
    test_dataloader = DataLoader(test_data,
                                 sampler=test_sampler,
                                 batch_size=args.eval_batch_size)
    '''
    start evaluate on test set after this epoch
    '''
    model.eval()

    logger.info("***** Running testing *****")
    logger.info("  Num examples = %d", len(test_examples))
    logger.info("  Batch size = %d", args.eval_batch_size)

    test_loss = 0
    nb_test_steps = 0
    preds = []
    print('Testing...')
    for input_ids, input_mask, segment_ids, label_ids in test_dataloader:
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)
        label_ids = label_ids.to(device)

        with torch.no_grad():
            logits = model(input_ids, input_mask, segment_ids, labels=None)
        logits = logits[0]
        if len(preds) == 0:
            preds.append(logits.detach().cpu().numpy())
        else:
            preds[0] = np.append(preds[0],
                                 logits.detach().cpu().numpy(),
                                 axis=0)

    preds = preds[0]
    pred_probs = softmax(preds, axis=1)[:, 0]
    pred_binary_labels_harsh = []
    pred_binary_labels_loose = []
    for i in range(preds.shape[0]):
        if preds[i][0] > preds[i][1] + 0.1:
            pred_binary_labels_harsh.append(0)
        else:
            pred_binary_labels_harsh.append(1)
        if preds[i][0] > preds[i][1]:
            pred_binary_labels_loose.append(0)
        else:
            pred_binary_labels_loose.append(1)

    seen_acc, unseen_acc = evaluate_situation_zeroshot_TwpPhasePred(
        pred_probs, pred_binary_labels_harsh, pred_binary_labels_loose,
        test_label_list, test_hypo_seen_str_indicator, test_hypo_2_type_index,
        seen_types)

    if unseen_acc > max_test_unseen_acc:
        max_test_unseen_acc = unseen_acc
    print('\n\n\t test seen_f1 & unseen_f1:', seen_acc, unseen_acc,
          ' max_test_unseen_f1:', max_test_unseen_acc, '\n')
Esempio n. 25
0
def main(train_file,
         valid_file,
         test_file,
         target_dir,
         embedding_size=512,
         hidden_size=512,
         dropout=0.5,
         num_classes=3,
         epochs=64,
         batch_size=32,
         lr=0.0004,
         patience=5,
         max_grad_norm=1.0,
         checkpoint=None):
    """
    Train the ESIM model on the Quora dataset.

    Args:
        train_file: A path to some preprocessed data that must be used
            to train the model.
        valid_file: A path to some preprocessed data that must be used
            to validate the model.
        embeddings_file: A path to some preprocessed word embeddings that
            must be used to initialise the model.
        target_dir: The path to a directory where the trained model must
            be saved.
        hidden_size: The size of the hidden layers in the model. Defaults
            to 300.
        dropout: The dropout rate to use in the model. Defaults to 0.5.
        num_classes: The number of classes in the output of the model.
            Defaults to 3.
        epochs: The maximum number of epochs for training. Defaults to 64.
        batch_size: The size of the batches for training. Defaults to 32.
        lr: The learning rate for the optimizer. Defaults to 0.0004.
        patience: The patience to use for early stopping. Defaults to 5.
        checkpoint: A checkpoint from which to continue training. If None,
            training starts from scratch. Defaults to None.
    """
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print(20 * "=", " Preparing for training ", 20 * "=")

    if not os.path.exists(target_dir):
        os.makedirs(target_dir)

    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    with open(train_file, "rb") as pkl:
        train_data = pickle.load(pkl)

    print("\t* Loading validation data...")
    with open(valid_file, "rb") as pkl:
        valid_data = pickle.load(pkl)
        valid_dataloader = transform_batch_data(valid_data, batch_size=batch_size, shuffle=False)

    print("\t* Loading test data...")
    with open(test_file, "rb") as pkl:
        test_data = pickle.load(pkl)
        test_dataloader = transform_batch_data(test_data, batch_size=batch_size, shuffle=False)

    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    pretrained_weights = 'bert-base-uncased'
    if checkpoint:
        tokenizer = BertTokenizer.from_pretrained(target_dir+'/transformer/')
        model = BertForSequenceClassification.from_pretrained(target_dir+'/transformer/')
    else:
        tokenizer = BertTokenizer.from_pretrained(pretrained_weights)
        model = BertForSequenceClassification.from_pretrained(pretrained_weights)
    print("\t* Building model success...")
    model.to(device)


    # -------------------- Preparation for training  ------------------- #
    # Parameters:
    lr = 1e-3
    max_grad_norm = 1.0
    num_total_steps = 1000
    num_warmup_steps = 100
    warmup_proportion = float(num_warmup_steps) / float(num_total_steps)  # 0.1
    optimizer = AdamW(model.parameters(), lr=lr,
                      correct_bias=False)  # To reproduce BertAdam specific behavior set correct_bias=False
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps,
                                     t_total=num_total_steps)  # PyTorch scheduler

    best_score = 0.0
    start_epoch = 1

    # Data for loss curves plot.
    epochs_count = []
    train_losses = []
    valid_losses = []

    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy = validate(model,
                                             tokenizer,
                                             valid_dataloader
                                             )
    print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%"
          .format(valid_loss, (valid_accuracy*100)))

    _, test_loss, test_accuracy = validate(model,
                                           tokenizer,
                                            test_dataloader)
    print("\t* test loss before training: {:.4f}, accuracy: {:.4f}%"
          .format(test_loss, (test_accuracy*100)))

    # -------------------- Training epochs ------------------- #
    print("\n",
          20 * "=",
          "Training transformer model on device: {}".format(device),
          20 * "=")

    patience_counter = 0
    for epoch in range(start_epoch, epochs+1):
        train_dataloader = transform_batch_data(train_data, batch_size=batch_size, shuffle=True)

        epochs_count.append(epoch)
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model,
                                                       tokenizer,
                                                       train_dataloader,
                                                       optimizer,
                                                       scheduler,
                                                       max_grad_norm)

        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%"
              .format(epoch_time, epoch_loss, (epoch_accuracy*100)))

        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = validate(model,
                                                          tokenizer,
                                                          valid_dataloader)

        valid_losses.append(epoch_loss)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
              .format(epoch_time, epoch_loss, (epoch_accuracy*100)))

        print("* Test for epoch {}:".format(epoch))
        epoch_time, epoch_loss, test_accuracy = validate(model,
                                                         tokenizer,
                                                          test_dataloader)
        print("-> Test. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
              .format(epoch_time, epoch_loss, (test_accuracy*100)))

        sys.stdout.flush() #刷新输出
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)

        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            # Save the best model. The optimizer is not saved to avoid having
            # a checkpoint file that is too heavy to be shared. To resume
            # training from the best model, use the 'esim_*.pth.tar'
            # checkpoints instead.
            torch.save({"epoch": epoch,
                        "model": model.state_dict(),
                        "best_score": best_score,
                        "epochs_count": epochs_count,
                        "train_losses": train_losses,
                        "valid_losses": valid_losses},
                       os.path.join(target_dir, "best.pth.tar"))

        # Save the model at each epoch.
        torch.save({"epoch": epoch,
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "optimizer": optimizer.state_dict(),
                    "epochs_count": epochs_count,
                    "train_losses": train_losses,
                    "valid_losses": valid_losses},
                   os.path.join(target_dir, "esim_{}.pth.tar".format(epoch)))

        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break

    # Plotting of the loss curves for the train and validation sets.
    fig = plt.figure()
    plt.plot(epochs_count, train_losses, "-r")
    plt.plot(epochs_count, valid_losses, "-b")
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.legend(["Training loss", "Validation loss"])
    plt.title("Cross entropy loss")
    fig.savefig('quora_loss.png')