def create_and_check_bloom_weight_initialization(self, config, *args): model = BloomModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)
def test_hidden_states_transformers(self): cuda_available = torch.cuda.is_available() model = BloomModel.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to(torch_device) model.eval() # fmt: off EXAMPLE_IDS = [ 3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478 ] # fmt: on MEAN_VALUE_LAST_LM = -4.3392181396484375e-05 MIN_MAX_DICT = {"min": -2.0625, "max": 2.75} tensor_ids = torch.LongTensor([EXAMPLE_IDS]) with torch.no_grad(): logits = model(tensor_ids.to(torch_device)) output_dict = { "min": logits.last_hidden_state.min(dim=-1).values[0][0].item(), "max": logits.last_hidden_state.max(dim=-1).values[0][0].item(), } if cuda_available: self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=4) else: self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=3) self.assertDictEqual(MIN_MAX_DICT, output_dict)
def create_and_check_bloom_model_past_large_inputs(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[ "last_hidden_state" ] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_bloom_model_past(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True) outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids)) outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids)) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_bloom_model_attention_mask_past( self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor( (1, ), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [ attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device) ], dim=1, ) # get two different outputs output_from_no_past = model( next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1, ), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach( ) output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue( torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_bloom_model(self, config, input_ids, input_mask, *args): model = BloomModel(config=config) model.to(torch_device) model.eval() result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer)
def test_model_from_pretrained(self): for model_name in BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BloomModel.from_pretrained(model_name) self.assertIsNotNone(model)
def convert_bloom_checkpoint_to_pytorch(bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp): # Construct model if bloom_config_file == "": config = BloomConfig() else: config = BloomConfig.from_json_file(bloom_config_file) if shard_model: file_names = os.listdir(bloom_checkpoint_path) file_names = list( sorted( filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))) index_dict = {"weight_map": {}, "metadata": {}} total_size = 0 missing_keys = None config = BloomConfig() for j, file in enumerate(file_names): print("Processing file: {}".format(file)) tensors = None for i in range(pretraining_tp): # load all TP files f_name = file.replace("model_00", f"model_0{i}") temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu") # Rename keys in the transformers names keys = list(temp.keys()) for key in keys: temp[layer_name_mapping(key, file)] = temp.pop(key) if tensors is None: tensors = temp else: for key in tensors.keys(): if any( key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel cat_dim = 1 if any( text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any( key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] = tensors[key] / pretraining_tp torch.save( tensors, os.path.join( pytorch_dump_folder_path, "pytorch_model_{}-of-{}.bin".format( str(j + 1).zfill(5), str(len(file_names)).zfill(5)), ), ) for key in tensors.keys(): value = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype) if key not in index_dict["weight_map"]: index_dict["weight_map"][ key] = "pytorch_model_{}-of-{}.bin".format( str(j + 1).zfill(5), str(len(file_names)).zfill(5)) config = BloomConfig() pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME index_dict["metadata"]["total_size"] = total_size with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f: json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n" f.write(json_config) else: model = BloomModel(config) file_names = os.listdir(bloom_checkpoint_path) file_names = list( sorted( filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))) missing_keys = None for i, file in enumerate(file_names): tensors = None for i in range(pretraining_tp): # load all TP files f_name = file.replace("model_00", f"model_0{i}") temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu") # Rename keys in the transformers names keys = list(temp.keys()) for key in keys: temp[layer_name_mapping(key, file)] = temp.pop(key) if tensors is None: tensors = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any( key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel cat_dim = 1 if any( text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any( key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] = tensors[key] / pretraining_tp other_keys = model.load_state_dict(tensors, strict=False) assert not other_keys.unexpected_keys if missing_keys is None: missing_keys = set(other_keys.missing_keys) else: missing_keys = missing_keys.intersection( set(other_keys.missing_keys)) assert not missing_keys # Save pytorch-model os.makedirs(pytorch_dump_folder_path, exist_ok=True) pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME print( f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) model = model.to(config.torch_dtype) torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string())