Esempio n. 1
0
    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Esempio n. 2
0
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
        model = GPTJForCausalLM(config)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        model.to(torch_device)

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()