Esempio n. 1
0
    def test_inference_image_classification(self):

        feature_extractor = PerceiverFeatureExtractor()
        model = PerceiverForImageClassificationLearned.from_pretrained(
            "deepmind/vision-perceiver-learned")
        model.to(torch_device)

        # prepare inputs
        image = prepare_img()
        inputs = feature_extractor(
            image, return_tensors="pt").pixel_values.to(torch_device)
        input_mask = None

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=inputs, attention_mask=input_mask)
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, model.config.num_labels))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.1653, -0.1993, -0.7521],
                                      device=torch_device)

        self.assertTrue(
            torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
Esempio n. 2
0
 def create_and_check_for_image_classification_learned(
     self, config, inputs, input_mask, sequence_labels, token_labels
 ):
     model = PerceiverForImageClassificationLearned(config=config)
     model.to(torch_device)
     model.eval()
     result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def convert_perceiver_checkpoint(pickle_file,
                                 pytorch_dump_folder_path,
                                 architecture="MLM"):
    """
    Copy/paste/tweak model's weights to our Perceiver structure.
    """

    # load parameters as FlatMapping data structure
    with open(pickle_file, "rb") as f:
        checkpoint = pickle.loads(f.read())

    state = None
    if isinstance(checkpoint, dict) and architecture in [
            "image_classification",
            "image_classification_fourier",
            "image_classification_conv",
    ]:
        # the image classification_conv checkpoint also has batchnorm states (running_mean and running_var)
        params = checkpoint["params"]
        state = checkpoint["state"]
    else:
        params = checkpoint

    # turn into initial state dict
    state_dict = dict()
    for scope_name, parameters in hk.data_structures.to_mutable_dict(
            params).items():
        for param_name, param in parameters.items():
            state_dict[scope_name + "/" + param_name] = param

    if state is not None:
        # add state variables
        for scope_name, parameters in hk.data_structures.to_mutable_dict(
                state).items():
            for param_name, param in parameters.items():
                state_dict[scope_name + "/" + param_name] = param

    # rename keys
    rename_keys(state_dict, architecture=architecture)

    # load HuggingFace model
    config = PerceiverConfig()
    subsampling = None
    repo_id = "datasets/huggingface/label-files"
    if architecture == "MLM":
        config.qk_channels = 8 * 32
        config.v_channels = 1280
        model = PerceiverForMaskedLM(config)
    elif "image_classification" in architecture:
        config.num_latents = 512
        config.d_latents = 1024
        config.d_model = 512
        config.num_blocks = 8
        config.num_self_attends_per_block = 6
        config.num_cross_attention_heads = 1
        config.num_self_attention_heads = 8
        config.qk_channels = None
        config.v_channels = None
        # set labels
        config.num_labels = 1000
        filename = "imagenet-1k-id2label.json"
        id2label = json.load(
            open(cached_download(hf_hub_url(repo_id, filename)), "r"))
        id2label = {int(k): v for k, v in id2label.items()}
        config.id2label = id2label
        config.label2id = {v: k for k, v in id2label.items()}
        if architecture == "image_classification":
            config.image_size = 224
            model = PerceiverForImageClassificationLearned(config)
        elif architecture == "image_classification_fourier":
            config.d_model = 261
            model = PerceiverForImageClassificationFourier(config)
        elif architecture == "image_classification_conv":
            config.d_model = 322
            model = PerceiverForImageClassificationConvProcessing(config)
        else:
            raise ValueError(f"Architecture {architecture} not supported")
    elif architecture == "optical_flow":
        config.num_latents = 2048
        config.d_latents = 512
        config.d_model = 322
        config.num_blocks = 1
        config.num_self_attends_per_block = 24
        config.num_self_attention_heads = 16
        config.num_cross_attention_heads = 1
        model = PerceiverForOpticalFlow(config)
    elif architecture == "multimodal_autoencoding":
        config.num_latents = 28 * 28 * 1
        config.d_latents = 512
        config.d_model = 704
        config.num_blocks = 1
        config.num_self_attends_per_block = 8
        config.num_self_attention_heads = 8
        config.num_cross_attention_heads = 1
        config.num_labels = 700
        # define dummy inputs + subsampling (as each forward pass is only on a chunk of image + audio data)
        images = torch.randn((1, 16, 3, 224, 224))
        audio = torch.randn((1, 30720, 1))
        nchunks = 128
        image_chunk_size = np.prod((16, 224, 224)) // nchunks
        audio_chunk_size = audio.shape[1] // config.samples_per_patch // nchunks
        # process the first chunk
        chunk_idx = 0
        subsampling = {
            "image":
            torch.arange(image_chunk_size * chunk_idx,
                         image_chunk_size * (chunk_idx + 1)),
            "audio":
            torch.arange(audio_chunk_size * chunk_idx,
                         audio_chunk_size * (chunk_idx + 1)),
            "label":
            None,
        }
        model = PerceiverForMultimodalAutoencoding(config)
        # set labels
        filename = "kinetics700-id2label.json"
        id2label = json.load(
            open(cached_download(hf_hub_url(repo_id, filename)), "r"))
        id2label = {int(k): v for k, v in id2label.items()}
        config.id2label = id2label
        config.label2id = {v: k for k, v in id2label.items()}
    else:
        raise ValueError(f"Architecture {architecture} not supported")
    model.eval()

    # load weights
    model.load_state_dict(state_dict)

    # prepare dummy input
    input_mask = None
    if architecture == "MLM":
        tokenizer = PerceiverTokenizer.from_pretrained(
            "/Users/NielsRogge/Documents/Perceiver/Tokenizer files")
        text = "This is an incomplete sentence where some words are missing."
        encoding = tokenizer(text, padding="max_length", return_tensors="pt")
        # mask " missing.". Note that the model performs much better if the masked chunk starts with a space.
        encoding.input_ids[0, 51:60] = tokenizer.mask_token_id
        inputs = encoding.input_ids
        input_mask = encoding.attention_mask
    elif architecture in [
            "image_classification", "image_classification_fourier",
            "image_classification_conv"
    ]:
        feature_extractor = PerceiverFeatureExtractor()
        image = prepare_img()
        encoding = feature_extractor(image, return_tensors="pt")
        inputs = encoding.pixel_values
    elif architecture == "optical_flow":
        inputs = torch.randn(1, 2, 27, 368, 496)
    elif architecture == "multimodal_autoencoding":
        images = torch.randn((1, 16, 3, 224, 224))
        audio = torch.randn((1, 30720, 1))
        inputs = dict(image=images,
                      audio=audio,
                      label=torch.zeros((images.shape[0], 700)))

    # forward pass
    if architecture == "multimodal_autoencoding":
        outputs = model(inputs=inputs,
                        attention_mask=input_mask,
                        subsampled_output_points=subsampling)
    else:
        outputs = model(inputs=inputs, attention_mask=input_mask)
    logits = outputs.logits

    # verify logits
    if not isinstance(logits, dict):
        print("Shape of logits:", logits.shape)
    else:
        for k, v in logits.items():
            print(f"Shape of logits of modality {k}", v.shape)

    if architecture == "MLM":
        expected_slice = torch.tensor([[-11.8336, -11.6850, -11.8483],
                                       [-12.8149, -12.5863, -12.7904],
                                       [-12.8440, -12.6410, -12.8646]])
        assert torch.allclose(logits[0, :3, :3], expected_slice)
        masked_tokens_predictions = logits[0, 51:60].argmax(dim=-1).tolist()
        expected_list = [38, 115, 111, 121, 121, 111, 116, 109, 52]
        assert masked_tokens_predictions == expected_list
        print("Greedy predictions:")
        print(masked_tokens_predictions)
        print()
        print("Predicted string:")
        print(tokenizer.decode(masked_tokens_predictions))

    elif architecture in [
            "image_classification", "image_classification_fourier",
            "image_classification_conv"
    ]:
        print("Predicted class:",
              model.config.id2label[logits.argmax(-1).item()])

    # Finally, save files
    Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
    print(f"Saving model to {pytorch_dump_folder_path}")
    model.save_pretrained(pytorch_dump_folder_path)