Esempio n. 1
0
def getLoader(datasetName,
              dataroot,
              originalSize,
              imageSize,
              batchSize=64,
              workers=4,
              mean=(0.5, 0.5, 0.5),
              std=(0.5, 0.5, 0.5),
              split='train',
              shuffle=True,
              seed=None):

    #import pdb; pdb.set_trace()
    if datasetName == 'pix2pix':
        # from datasets.pix2pix import pix2pix as commonDataset
        # import transforms.pix2pix as transforms
        from datasets.pix2pix import pix2pix as commonDataset
        import transforms.pix2pix as transforms
    elif datasetName == 'pix2pix_val':
        # from datasets.pix2pix_val import pix2pix_val as commonDataset
        # import transforms.pix2pix as transforms
        from datasets.pix2pix_val import pix2pix_val as commonDataset
        import transforms.pix2pix as transforms
    if datasetName == 'pix2pix_class':
        # from datasets.pix2pix import pix2pix as commonDataset
        # import transforms.pix2pix as transforms
        from datasets.pix2pix_class import pix2pix as commonDataset
        import transforms.pix2pix as transforms
    if split == 'train':
        dataset = commonDataset(
            root=dataroot,
            transform=transforms.Compose([
                transforms.Scale(originalSize),
                #transforms.RandomCrop(imageSize),
                #transforms.CenterCrop(imageSize),
                #transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean, std),
            ]),
            seed=seed)
    else:
        dataset = commonDataset(
            root=dataroot,
            transform=transforms.Compose([
                transforms.Scale(originalSize),
                #transforms.CenterCrop(imageSize),
                transforms.ToTensor(),
                transforms.Normalize(mean, std),
            ]),
            seed=seed)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batchSize,
                                             shuffle=shuffle,
                                             num_workers=int(workers))
    return dataloader
Esempio n. 2
0
def getLoader(datasetName,
              dataroot,
              originalSize,
              imageSize,
              batchSize=64,
              workers=4,
              mean=(0.5, 0.5, 0.5),
              std=(0.5, 0.5, 0.5),
              split='train',
              shuffle=True,
              seed=None):

    if datasetName == 'pix2pix_val':
        from pix2pix_val import pix2pix_val as commonDataset
        import transforms.pix2pix as transforms

    dataset = commonDataset(root=dataroot,
                            transform=transforms.Compose([
                                transforms.Scale(originalSize),
                                transforms.ToTensor(),
                                transforms.Normalize(mean, std),
                            ]),
                            seed=seed)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batchSize,
                                             shuffle=shuffle,
                                             num_workers=int(workers))
    return dataloader
Esempio n. 3
0
def getLoader(datasetName,
              dataroot,
              originalSize,
              imageSize,
              batchSize=64,
              workers=4,
              mean=(0.5, 0.5, 0.5),
              std=(0.5, 0.5, 0.5),
              split='train',
              shuffle=True,
              seed=None,
              pre="",
              label_file=""):
    if datasetName == 'my_loader':
        from datasets.my_loader import my_loader as commonDataset
        import transforms.pix2pix as transforms
    if split == 'train':
        dataset = commonDataset(root=dataroot,
                                transform=transforms.Compose([
                                    transforms.Scale(originalSize),
                                    transforms.RandomCrop(imageSize),
                                    transforms.RandomHorizontalFlip(),
                                    transforms.ToTensor(),
                                    transforms.Normalize(mean, std),
                                ]),
                                seed=seed,
                                pre=pre,
                                label_file=label_file)
    else:
        dataset = commonDataset(root=dataroot,
                                transform=transforms.Compose([
                                    transforms.Scale(originalSize),
                                    transforms.CenterCrop(imageSize),
                                    transforms.ToTensor(),
                                    transforms.Normalize(mean, std),
                                ]),
                                seed=seed,
                                pre=pre,
                                label_file=label_file)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batchSize,
                                             shuffle=shuffle,
                                             num_workers=int(workers))
    return dataloader
Esempio n. 4
0
def deblur_images(images):
    opt = Opt()

    create_exp_dir(opt.exp)
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    torch.cuda.manual_seed_all(opt.manualSeed)
    print("Random Seed: ", opt.manualSeed)

    dataset = imageCustomDataset(
        images=images,
        transform=transforms.Compose([
            transforms.Scale(opt.originalSize),
            #transforms.CenterCrop(imageSize),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ]),
        seed=opt.manualSeed)

    valDataloader = torch.utils.data.DataLoader(dataset,
                                                batch_size=opt.valBatchSize,
                                                shuffle=False,
                                                num_workers=int(opt.workers))

    # get logger
    trainLogger = open('%s/train.log' % opt.exp, 'w')

    ngf = opt.ngf
    ndf = opt.ndf
    inputChannelSize = opt.inputChannelSize
    outputChannelSize = opt.outputChannelSize

    # Load Pre-trained derain model
    netS = net.Segmentation()
    netG = net.Deblur_segdl()

    #netC.apply(weights_init)

    netG.apply(weights_init)
    if opt.netG != '':
        state_dict_g = torch.load(opt.netG, map_location='cpu')
        new_state_dict_g = {}
        for k, v in state_dict_g.items():
            name = k[7:]  # remove `module.`
            #print(k)
            new_state_dict_g[name] = v
        # load params
        netG.load_state_dict(new_state_dict_g)
    #netG.load_state_dict(torch.load(opt.netG))
    # print(netG)
    netG.eval()
    #netS.apply(weights_init)
    netS.load_state_dict(
        torch.load('./pretrained_models/SMaps_Best.pth', map_location='cpu'))
    #netS.eval()
    netS.cpu()
    netG.cpu()

    # Initialize testing data
    target = torch.FloatTensor(opt.batchSize, outputChannelSize, opt.imageSize,
                               opt.imageSize)
    input = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize,
                              opt.imageSize)

    val_target = torch.FloatTensor(opt.valBatchSize, outputChannelSize,
                                   opt.imageSize, opt.imageSize)
    val_input = torch.FloatTensor(opt.valBatchSize, inputChannelSize,
                                  opt.imageSize, opt.imageSize)
    label_d = torch.FloatTensor(opt.batchSize)

    target = torch.FloatTensor(opt.batchSize, outputChannelSize, opt.imageSize,
                               opt.imageSize)
    input = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize,
                              opt.imageSize)
    depth = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize,
                              opt.imageSize)
    ato = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize,
                            opt.imageSize)

    val_target = torch.FloatTensor(opt.valBatchSize, outputChannelSize,
                                   opt.imageSize, opt.imageSize)
    val_input = torch.FloatTensor(opt.valBatchSize, inputChannelSize,
                                  opt.imageSize, opt.imageSize)
    val_depth = torch.FloatTensor(opt.valBatchSize, inputChannelSize,
                                  opt.imageSize, opt.imageSize)
    val_ato = torch.FloatTensor(opt.valBatchSize, inputChannelSize,
                                opt.imageSize, opt.imageSize)

    target_128 = torch.FloatTensor(opt.batchSize, outputChannelSize,
                                   (opt.imageSize // 4), (opt.imageSize // 4))
    input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize,
                                  (opt.imageSize // 4), (opt.imageSize // 4))
    target_256 = torch.FloatTensor(opt.batchSize, outputChannelSize,
                                   (opt.imageSize // 2), (opt.imageSize // 2))
    input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize,
                                  (opt.imageSize // 2), (opt.imageSize // 2))

    val_target_128 = torch.FloatTensor(opt.batchSize, outputChannelSize,
                                       (opt.imageSize // 4),
                                       (opt.imageSize // 4))
    val_input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize,
                                      (opt.imageSize // 4),
                                      (opt.imageSize // 4))
    val_target_256 = torch.FloatTensor(opt.batchSize, outputChannelSize,
                                       (opt.imageSize // 2),
                                       (opt.imageSize // 2))
    val_input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize,
                                      (opt.imageSize // 2),
                                      (opt.imageSize // 2))

    target, input, depth, ato = target.cpu(), input.cpu(), depth.cpu(
    ), ato.cpu()
    val_target, val_input, val_depth, val_ato = val_target.cpu(
    ), val_input.cpu(), val_depth.cpu(), val_ato.cpu()

    target = Variable(target, volatile=True)
    input = Variable(input, volatile=True)
    depth = Variable(depth, volatile=True)
    ato = Variable(ato, volatile=True)

    target_128, input_128 = target_128.cpu(), input_128.cpu()
    val_target_128, val_input_128 = val_target_128.cpu(), val_input_128.cpu()
    target_256, input_256 = target_256.cpu(), input_256.cpu()
    val_target_256, val_input_256 = val_target_256.cpu(), val_input_256.cpu()

    target_128 = Variable(target_128)
    input_128 = Variable(input_128)
    target_256 = Variable(target_256)
    input_256 = Variable(input_256)

    label_d = Variable(label_d.cpu())

    optimizerG = optim.Adam(netG.parameters(),
                            lr=opt.lrG,
                            betas=(opt.beta1, 0.999),
                            weight_decay=0.00005)

    result_image = []

    for epoch in range(1):
        heavy, medium, light = 200, 200, 200
        for i, data in enumerate(valDataloader, 0):
            if 1:
                import time
                data_val = data

                t0 = time.time()

                val_input_cpu, val_target_cpu = data_val

                val_target_cpu, val_input_cpu = val_target_cpu.float().cpu(
                ), val_input_cpu.float().cpu()
                val_batch_output = torch.FloatTensor(val_input.size()).fill_(0)

                val_input.resize_as_(val_input_cpu).copy_(val_input_cpu)
                val_target = Variable(val_target_cpu, volatile=True)

                z = 0

                with torch.no_grad():
                    for idx in range(val_input.size(0)):
                        single_img = val_input[idx, :, :, :].unsqueeze(0)
                        val_inputv = Variable(single_img, volatile=True)
                        # print (val_inputv.size())
                        # val_inputv = val_inputv.float().cuda()
                        val_inputv_256 = torch.nn.functional.interpolate(
                            val_inputv, scale_factor=0.5)
                        val_inputv_128 = torch.nn.functional.interpolate(
                            val_inputv, scale_factor=0.25)

                        ## Get de-rained results ##
                        #residual_val, x_hat_val, x_hatlv128, x_hatvl256 = netG(val_inputv, val_inputv_256, val_inputv_128)

                        t1 = time.time()
                        print('running time:' + str(t1 - t0))
                        from PIL import Image

                        #x_hat_val = netG(val_inputv)
                        #smaps_vl = netS(val_inputv)
                        #S_valinput = torch.cat([smaps_vl,val_inputv],1)
                        """smaps,smaps64 = netS(val_inputv,val_inputv_256)
              S_input = torch.cat([smaps,val_inputv],1)
              x_hat_val, x_hat_val64 = netG(val_inputv,val_inputv_256,smaps,smaps64)"""

                        #x_hatcls1,x_hatcls2,x_hatcls3,x_hatcls4,x_lst1,x_lst2,x_lst3,x_lst4 = netG(val_inputv,val_inputv_256,smaps_i,smaps_i64,class1,class2,class3,class4)
                        smaps, smaps64 = netS(val_inputv, val_inputv_256)
                        class1 = torch.zeros([1, 1, 128, 128],
                                             dtype=torch.float32)
                        class1[:, 0, :, :] = smaps[:, 0, :, :]
                        class2 = torch.zeros([1, 1, 128, 128],
                                             dtype=torch.float32)
                        class2[:, 0, :, :] = smaps[:, 1, :, :]
                        class3 = torch.zeros([1, 1, 128, 128],
                                             dtype=torch.float32)
                        class3[:, 0, :, :] = smaps[:, 2, :, :]
                        class4 = torch.zeros([1, 1, 128, 128],
                                             dtype=torch.float32)
                        class4[:, 0, :, :] = smaps[:, 3, :, :]
                        class_msk1 = torch.zeros([1, 3, 128, 128],
                                                 dtype=torch.float32)
                        class_msk1[:, 0, :, :] = smaps[:, 0, :, :]
                        class_msk1[:, 1, :, :] = smaps[:, 0, :, :]
                        class_msk1[:, 2, :, :] = smaps[:, 0, :, :]
                        class_msk2 = torch.zeros([1, 3, 128, 128],
                                                 dtype=torch.float32)
                        class_msk2[:, 0, :, :] = smaps[:, 1, :, :]
                        class_msk2[:, 1, :, :] = smaps[:, 1, :, :]
                        class_msk2[:, 2, :, :] = smaps[:, 1, :, :]
                        class_msk3 = torch.zeros([1, 3, 128, 128],
                                                 dtype=torch.float32)
                        class_msk3[:, 0, :, :] = smaps[:, 2, :, :]
                        class_msk3[:, 1, :, :] = smaps[:, 2, :, :]
                        class_msk3[:, 2, :, :] = smaps[:, 2, :, :]
                        class_msk4 = torch.zeros([1, 3, 128, 128],
                                                 dtype=torch.float32)
                        class_msk4[:, 0, :, :] = smaps[:, 3, :, :]
                        class_msk4[:, 1, :, :] = smaps[:, 3, :, :]
                        class_msk4[:, 2, :, :] = smaps[:, 3, :, :]
                        class1 = class1.float().cpu()
                        class2 = class2.float().cpu()
                        class3 = class3.float().cpu()
                        class4 = class4.float().cpu()
                        class_msk4 = class_msk4.float().cpu()
                        class_msk3 = class_msk3.float().cpu()
                        class_msk2 = class_msk2.float().cpu()
                        class_msk1 = class_msk1.float().cpu()
                        x_hat_val, x_hat_val64, xmask1, xmask2, xmask3, xmask4, xcl_class1, xcl_class2, xcl_class3, xcl_class4 = netG(
                            val_inputv, val_inputv_256, smaps, class1, class2,
                            class3, class4, val_inputv, class_msk1, class_msk2,
                            class_msk3, class_msk4)
                        # x_hat1,x_hat64,xmask1,xmask2,xmask3,xmask4,xcl_class1,xcl_class2,xcl_class3,xcl_class4 = netG(input,input_256,smaps_i,class1,class2,class3,class4,target,class_msk1,class_msk2,class_msk3,class_msk4)
                        #x_hat_val.data
                        #val_batch_output[idx,:,:,:].copy_(x_hat_val.data[0,1,:,:])
                        # print(torch.mean(xmask1),torch.mean(xmask2),torch.mean(xmask3),torch.mean(xmask4))
                        print(smaps.size())
                        tensor = x_hat_val.data.cpu()

                        tensor = torch.squeeze(tensor)
                        tensor = norm_range(tensor, None)
                        # print(tensor.min(),tensor.max())

                        ndarr = tensor.mul(255).clamp(0, 255).byte().permute(
                            1, 2, 0).numpy()
                        im = Image.fromarray(ndarr)
                        result_image.append(im)
                        # im.save(filename)
    return result_image