def _ReversibleSerialForget(layers, d_model, n_layers): """ReversibleSerial but with a forgetting block every n_layers.""" if not n_layers or len(layers) <= n_layers + 1: return tl.ReversibleSerial(layers) layers1, layers2 = layers[:n_layers], layers[n_layers:] return tl.Serial(tl.ReversibleSerial(layers1), tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), tl.Dense(d_model), tl.Dup(), _ReversibleSerialForget(layers2, d_model, n_layers))
def create_reformer_blocks(n_layers, dense=True): # pylint: disable=invalid-name if n_layers == 0: return [tl.LayerNorm()] d_per_head = d_model // n_heads decoder_blocks = [ DecoderBlock( d_model, d_ff, d_per_head, d_per_head, n_heads, # pylint: disable=g-complex-comprehension vanilla_attn_type, dropout, ff_activation, dropout, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0, attention_chunk_size=0, mode=mode) for _ in range(n_layers) ] return [ tl.Dup(), tl.ReversibleSerial(decoder_blocks), tl.Concatenate(), tl.LayerNorm(), tl.Dense(d_model) if dense else [], ]
def _ReversibleSerialForget(layers, d_model, n_layers, forget_dense=True): """ReversibleSerial but with a forgetting block every n_layers.""" if not n_layers or len(layers) <= n_layers + 1: return tl.ReversibleSerial(layers) layers1, layers2 = layers[:n_layers], layers[n_layers:] if forget_dense: forgetting_layer = tl.Serial( _XYAvg(), tl.Dense(d_model), tl.Dup(), ) else: forgetting_layer = tl.Select([0, 1]) return tl.Serial( tl.ReversibleSerial(layers1), forgetting_layer, _ReversibleSerialForget(layers2, d_model, n_layers, forget_dense))
def create_reformer_blocks( # pylint: disable=invalid-name n_layers, total_kv_pooling=1, layer_chunk_len=None, force_relative=False, dense=True): if n_layers == 0: return [tl.LayerNorm()] def determine_attn_type(layer_number): # pylint: disable=invalid-name if layer_chunk_len is None and not force_relative: return vanilla_attn_type if layer_chunk_len is not None: chunk_offset = (layer_number % 2) * (layer_chunk_len // 2) else: chunk_offset = None return functools.partial( RelativeAttentionWrapper, n_raw_tokens_generated=n_raw_tokens_generated, max_inference_length=max_len, total_kv_pooling=total_kv_pooling, chunk_len=layer_chunk_len, chunk_offset=chunk_offset) d_per_head = d_model // n_heads decoder_blocks = [] for i in range(n_layers): layer_attn_type = determine_attn_type(i) decoder_blocks.append( DecoderBlock( d_model, d_ff, d_per_head, d_per_head, n_heads, layer_attn_type, dropout, ff_activation, dropout, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0, attention_chunk_size=0, mode=mode)) return [ tl.Dup(), tl.ReversibleSerial(decoder_blocks), tl.Concatenate(), tl.LayerNorm(), tl.Dense(d_model) if dense else [], ]
def ReformerShortenLM(vocab_size, shorten_factor=1, d_embedding=256, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_layers=6, n_heads=8, dropout=0.1, max_len=2048, n_attention_chunks=1, attention_type=tl.DotProductCausalAttention, share_qk=False, axial_pos_shape=(), d_axial_pos_embs=None, ff_activation=tl.FastGelu, ff_use_sru=0, ff_chunk_size=0, mode='train'): """Reversible transformer language model with shortening. When shorten_factor is F and processing an input of shape [batch, length], we embed the (shifted-right) input and then group each F elements (on length) into a single vector -- so that in the end we process a tensor of shape [batch, length // F, d_model] almost until the end -- at the end it's un-shortend and a SRU is applied. This reduces the length processed inside the main model body, effectively making the model faster but possibly slightly less accurate. Args: vocab_size: int: vocab size shorten_factor: by how much to shorten, see above d_embedding: the depth of the embedding layer and final logits d_model: int: depth of *each half* of the two-part features d_ff: int: depth of feed-forward layer d_attention_key: int: depth of key vector for each attention head d_attention_value: int: depth of value vector for each attention head n_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding n_attention_chunks: int: number of chunks for attention attention_type: class: attention class to use, such as DotProductAttention. share_qk: bool, whether to share queries and keys. axial_pos_shape: tuple of ints: input shape to use for the axial position encoding. If unset, axial position encoding is disabled. d_axial_pos_embs: tuple of ints: depth of position embedding for each axis. Tuple length must match axial_pos_shape, values must sum to d_embedding. ff_activation: the non-linearity in feed-forward layer ff_use_sru: int; if > 0, we use this many SRU layers instead of feed-forward ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks mode: str: 'train' or 'eval' Returns: the layer. """ assert mode != 'predict' # TODO(lukaszkaiser,kitaev): fast inference if not axial_pos_shape: positional_encoding = tl.PositionalEncoding( max_len=max_len, dropout=dropout, mode=mode) else: assert d_axial_pos_embs is not None positional_encoding = tl.AxialPositionalEncoding( shape=axial_pos_shape, d_embs=d_axial_pos_embs, dropout_broadcast_dims=tuple(range(1, len(axial_pos_shape) + 1)), dropout=dropout, mode=mode) positional_embedder = [ tl.Embedding(d_embedding, vocab_size), BroadcastedDropout(rate=dropout, mode=mode), # pylint: disable=no-value-for-parameter positional_encoding, ] decoder_blocks = [] if isinstance(attention_type, (tuple, list)): assert n_layers % len(attention_type) == 0 else: attention_type = [attention_type] for layer_idx in range(n_layers): layer_attention_type = attention_type[layer_idx % len(attention_type)] decoder_block = DecoderBlock( d_model, d_ff, d_attention_key, d_attention_value, n_heads, n_attention_chunks, attention_type=layer_attention_type, dropout=dropout, share_qk=(share_qk or issubclass(layer_attention_type, tl.LSHCausalAttention)), ff_activation=ff_activation, ff_use_sru=ff_use_sru, ff_chunk_size=ff_chunk_size, mode=mode) decoder_blocks.append(decoder_block) # pylint: disable=g-long-lambda return tl.Serial( tl.ShiftRight(), positional_embedder, tl.Dup(), # Stack has (x, x), the first will be shortened # Before shortening, we need to pad by shorten factor so as not to leak # information into the future. To understand why, imagine shorten factor # of 2 and sequence of length 4, so ABCD. If we shift just by 1, then we # would have 0ABC, which gets grouped to [0A][BC] on input, which is # predicting ABCD as targets. The problem is that [0A] has access to A # and [BC] has access to C -- it will learn to copy it, peek into # the future. Shifting twice to [00][AB] solves the problem as the first # "big" symbol becomes all-0 and the rest is shifted enough. tl.ShiftRight(n_shifts=shorten_factor - 1), tl.Fn(lambda x: np.reshape( # Shorten -- move to depth. x, (x.shape[0], x.shape[1] // shorten_factor, -1)), n_out=1), tl.Dense(d_model), tl.Dup(), # Stack has (short_x, short_x, x) tl.ReversibleSerial(decoder_blocks), tl.Select([0], n_in=2), tl.LayerNorm(), BroadcastedDropout(rate=dropout, mode=mode), # pylint: disable=no-value-for-parameter tl.Dense(shorten_factor * d_embedding), tl.Fn(lambda x: np.reshape( # Prolong back. x, (x.shape[0], x.shape[1] * shorten_factor, -1)), n_out=1), tl.Concatenate(), # Concatenate with just the embeddings. tl.CausalConv(d_embedding), tl.Relu(), tl.SRU(d_embedding), # One RNN layer for conditional dependence. tl.Dense(vocab_size), tl.LogSoftmax() )
def ReformerLM(vocab_size, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_layers=6, n_heads=8, dropout=0.1, max_len=2048, n_chunks=0, n_attention_chunks=1, attention_type=tl.DotProductCausalAttention, share_qk=False, axial_pos_shape=(), d_axial_pos_embs=None, ff_activation=tl.FastGelu, ff_use_sru=0, ff_chunk_size=0, mode='train'): """Reversible transformer language model (only uses a decoder, no encoder). Args: vocab_size: int: vocab size d_model: int: depth of *each half* of the two-part features d_ff: int: depth of feed-forward layer d_attention_key: int: depth of key vector for each attention head d_attention_value: int: depth of value vector for each attention head n_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding n_chunks: int: number of chunks (must match input pipeline) n_attention_chunks: int: number of chunks for attention attention_type: class: attention class to use, such as DotProductAttention. share_qk: bool, whether to share queries and keys. axial_pos_shape: tuple of ints: input shape to use for the axial position encoding. If unset, axial position encoding is disabled. d_axial_pos_embs: tuple of ints: depth of position embedding for each axis. Tuple length must match axial_pos_shape, and values must sum to d_model. ff_activation: the non-linearity in feed-forward layer ff_use_sru: int; if > 0, we use this many SRU layers instead of feed-forward ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks mode: str: 'train', 'eval', or 'predict' Returns: the layer. """ if n_chunks == 0: n_chunks = 1 concatenate_input_chunks = [] else: concatenate_input_chunks = tl.Concatenate(n_items=n_chunks) d_emb = d_model if not axial_pos_shape: positional_encoding = tl.PositionalEncoding( max_len=max_len, dropout=dropout, mode=mode) elif axial_pos_shape == 'fixed-base': # TODO(lukaszkaiser): remove this HACK positional_encoding = tl.FixedBasePositionalEncoding(mode=mode) d_emb //= 2 elif axial_pos_shape == 'infinite': # TODO(lukaszkaiser): remove this HACK positional_encoding = tl.InfinitePositionalEncoding(affine=False) elif axial_pos_shape == 'infinite-affine': # TODO(lukaszkaiser): remove this HACK positional_encoding = tl.InfinitePositionalEncoding() elif axial_pos_shape == 'time-bin': # TODO(lukaszkaiser): remove this HACK positional_encoding = tl.TimeBinPositionalEncoding() else: assert d_axial_pos_embs is not None positional_encoding = tl.AxialPositionalEncoding( shape=axial_pos_shape, d_embs=d_axial_pos_embs, dropout_broadcast_dims=tuple(range(1, len(axial_pos_shape) + 1)), dropout=dropout, mode=mode) positional_embedder = [ tl.Embedding(d_emb, vocab_size), BroadcastedDropout(rate=dropout, mode=mode), # pylint: disable=no-value-for-parameter positional_encoding, ] decoder_blocks = [] if isinstance(attention_type, (tuple, list)): assert n_layers % len(attention_type) == 0 else: attention_type = [attention_type] for layer_idx in range(n_layers): layer_attention_type = attention_type[layer_idx % len(attention_type)] decoder_block = DecoderBlock( d_model, d_ff, d_attention_key, d_attention_value, n_heads, n_attention_chunks, attention_type=layer_attention_type, dropout=dropout, share_qk=(share_qk or issubclass(layer_attention_type, tl.LSHCausalAttention)), ff_activation=ff_activation, ff_use_sru=ff_use_sru, ff_chunk_size=ff_chunk_size, mode=mode) decoder_blocks.append(decoder_block) return tl.Serial( concatenate_input_chunks, tl.ShiftRight(mode=mode), positional_embedder, tl.Dup(), tl.ReversibleSerial(decoder_blocks + [ SplitForOutput(n_sections=n_chunks, axis=-2), # pylint: disable=no-value-for-parameter ]), Map([ # TODO(kitaev): Test whether dropout should go before or after the # LayerNorm, and whether dropout broadcasting is needed here. tl.LayerNorm(), BroadcastedDropout(rate=dropout, mode=mode), # pylint: disable=no-value-for-parameter tl.Dense(vocab_size), tl.LogSoftmax(), ], n_sections=n_chunks), )
def Reformer(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, dropout=0.1, max_len=2048, ff_activation=tl.Relu, ff_dropout=None, mode='train'): """Reversible transformer encoder-decoder model. This model expects an input pair: target, source. At the moment, this model supports dot-product attention only. For the attention types in the Reformer paper, see ReformerLM. Args: input_vocab_size: int: vocab size of the source. output_vocab_size: int (optional): vocab size of the target. If None, the source and target are assumed to have the same vocab. d_model: int: depth of embedding d_ff: int: depth of feed-forward layer n_encoder_layers: int: number of encoder layers n_decoder_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding ff_activation: the non-linearity in feed-forward layer ff_dropout: float: (optional) separate dropout rate at feed-forward nonlinearity. This is called relu_dropout in T2T. mode: str: 'train' or 'eval' Returns: A Reformer model as a layer that maps from a target, source pair to activations over a vocab set. """ # The current API for custom gradients assumes that a layer must be # differentiable wrt all of its inputs, but the Transformer puts bool-dtype # masks on the stack. This causes jax to error, even though the so-called # "gradient" wrt the masks is never actually computed. # TODO(kitaev): remove this hack. jax.api._check_inexact_input_vjp = lambda x: None # pylint: disable=protected-access def PositionalEncoder(vocab_size, mode): # tokens --> vectors # TODO(kitaev): axial positional encoding is better for very long sequences. positional_encoding = tl.PositionalEncoding( max_len=max_len, dropout=dropout, mode=mode) return [ tl.Embedding(d_model, vocab_size), BroadcastedDropout(rate=dropout, mode=mode), positional_encoding, ] # TODO(kitaev): The regular trax Transformer shares vocab embeddings and # position embeddings between the encoder and decoder if output_vocab_size is # None. This isn't supported here because (a) Trax shares weights by sharing # layer instances, but we need two separate instances to have mode == 'eval' # for the encoder but mode == 'predict' for the decoder; and (b) tl.Cache does # not work if its sublayers participate in any weight sharing. # Mode 'predict' means that the decoder should be run one token at a time. # The encoder only ever runs over full sequences, which is why it's switched # to 'eval' mode instead. in_encoder = PositionalEncoder( input_vocab_size, mode='eval' if mode == 'predict' else mode) if output_vocab_size is None: output_vocab_size = input_vocab_size out_encoder = PositionalEncoder(output_vocab_size, mode) encoder_blocks = [ EncoderBlock( d_model, d_ff, n_heads, dropout, ff_activation, ff_dropout, mode) for _ in range(n_encoder_layers)] encoder = tl.Serial([ in_encoder, tl.Dup(), tl.ReversibleSerial(encoder_blocks), tl.Fn(lambda x, y: (x+y)/2.0), tl.LayerNorm(), ]) if mode == 'predict': encoder = tl.Cache(encoder) encoder_decoder_blocks = [ EncoderDecoderBlock( d_model, d_ff, n_heads, dropout, ff_activation, ff_dropout, mode) for _ in range(n_decoder_layers)] # Assemble and return the model. return tl.Serial( # Input: encoder_side_tokens, decoder_side_tokens # Copy decoder tokens for use in loss. tl.Select([0, 1, 1]), # tok_e tok_d tok_d tl.Branch([], [ # tok_e mask tok_d ..... tl.PaddingMask(), tl.Fn(lambda x: np.squeeze(x, (1, 2)), n_out=1)]), # Encode. encoder, # vec_e mask tok_d ..... # Decode. tl.Select([2, 0, 1]), # tok_d vec_e mask ..... tl.ShiftRight(mode=mode), # tok_d vec_e mask ..... out_encoder, # vec_d vec_e mask ..... tl.Dup(), # vec_d1 vec_d2 vec_e mask ..... tl.ReversibleSerial(encoder_decoder_blocks), tl.Fn(lambda x, y: (x+y)/2.0), # vec_d vec_e mask ..... tl.LayerNorm(), # vec_d vec_e mask ..... # Map to output vocab. tl.Select([0], n_in=3), # vec_d ..... tl.Dense(output_vocab_size), # vec_d ..... tl.LogSoftmax(), # vec_d ..... )
def ReformerLM(vocab_size, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_layers=6, n_heads=8, dropout=0.1, max_len=2048, n_chunks=0, n_attention_chunks=1, attention_type=tl.DotProductCausalAttention, share_qk=False, mode='train'): """Reversible transformer language model (only uses a decoder, no encoder). Args: vocab_size: int: vocab size d_model: int: depth of *each half* of the two-part features d_ff: int: depth of feed-forward layer d_attention_key: int: depth of key vector for each attention head d_attention_value: int: depth of value vector for each attention head n_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding n_chunks: int: number of chunks (must match input pipeline) n_attention_chunks: int: number of chunks for attention attention_type: class: attention class to use, such as DotProductAttention. share_qk: bool, whether to share queries and keys. mode: str: 'train' or 'eval' Returns: the layer. """ if n_chunks == 0: n_chunks = 1 concatenate_input_chunks = [] concatenate_output_chunks = tl.Concatenate(n_items=n_chunks, axis=-2) else: concatenate_input_chunks = tl.Concatenate(n_items=n_chunks) concatenate_output_chunks = [] positional_embedder = [ tl.Embedding(d_model, vocab_size), BroadcastedDropout(rate=dropout, mode=mode), # pylint: disable=no-value-for-parameter tl.PositionalEncoding(max_len=max_len), ] return tl.Model( concatenate_input_chunks, tl.ShiftRight(), positional_embedder, tl.Dup(), tl.ReversibleSerial([ # pylint: disable=g-complex-comprehension DecoderBlock(d_model, d_ff, d_attention_key, d_attention_value, n_heads, n_attention_chunks, attention_type, dropout, share_qk, mode) for _ in range(n_layers) ] + [ SplitForOutput(n_sections=n_chunks, axis=-2), # pylint: disable=no-value-for-parameter ]), Map([ # TODO(kitaev): Test whether dropout should go before or after the # LayerNorm, and whether dropout broadcasting is needed here. tl.LayerNorm(), BroadcastedDropout(rate=dropout, mode=mode), # pylint: disable=no-value-for-parameter tl.Dense(vocab_size), tl.LogSoftmax(), ], n_sections=n_chunks), concatenate_output_chunks, )
def ReformerNoEncDecAttention(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, dropout=0.1, max_len=2048, encoder_attention_type=tl.SelfAttention, encoder_decoder_attention_type=tl.SelfAttention, axial_pos_shape=(), d_axial_pos_embs=None, ff_activation=tl.Relu, ff_use_sru=0, ff_chunk_size=0, ff_dropout=None, mode='train'): """Reversible transformer encoder-decoder model. This model expects an input pair: source, target. At the moment, this model supports dot-product attention only. For the attention types in the Reformer paper, see ReformerLM. Args: input_vocab_size: int: vocab size of the source. output_vocab_size: int (optional): vocab size of the target. If None, the source and target are assumed to have the same vocab. d_model: int: depth of embedding d_ff: int: depth of feed-forward layer d_attention_key: int: depth of key vector for each attention head d_attention_value: int: depth of value vector for each attention head n_encoder_layers: int: number of encoder layers n_decoder_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding encoder_attention_type: class: attention class to use, such as SelfAttention encoder_decoder_attention_type: class: attention class to use, such as SelfAttention axial_pos_shape: tuple of ints: input shape to use for the axial position encoding. If unset, axial position encoding is disabled. d_axial_pos_embs: tuple of ints: depth of position embedding for each axis. Tuple length must match axial_pos_shape, and values must sum to d_model. ff_activation: the non-linearity in feed-forward layer ff_use_sru: int; if > 0, we use this many SRU layers instead of feed-forward ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks ff_dropout: float: (optional) separate dropout rate at feed-forward nonlinearity. This is called relu_dropout in T2T. mode: str: 'train' or 'eval' Returns: A Reformer model as a layer that maps from a target, source pair to activations over a vocab set. """ # The current API for custom gradients assumes that a layer must be # differentiable wrt all of its inputs, but the Transformer puts bool-dtype # masks on the stack. This causes jax to error, even though the so-called # "gradient" wrt the masks is never actually computed. # TODO(kitaev): remove this hack. if fastmath.backend_name() == 'jax': jax.api._check_inexact_input_vjp = lambda x: None # pylint: disable=protected-access def PositionalEncoder(vocab_size, mode): # tokens --> vectors if not axial_pos_shape: positional_encoding = tl.PositionalEncoding( max_len=max_len, dropout=dropout, mode=mode) else: assert d_axial_pos_embs is not None positional_encoding = tl.AxialPositionalEncoding( shape=axial_pos_shape, d_embs=d_axial_pos_embs, dropout_broadcast_dims=tuple(range(1, len(axial_pos_shape) + 1)), dropout=dropout, mode=mode) return [ tl.Embedding(vocab_size, d_model), tl.Dropout(rate=dropout, shared_axes=[-2], mode=mode), positional_encoding, ] # TODO(kitaev): The regular trax Transformer shares vocab embeddings and # position embeddings between the encoder and decoder if output_vocab_size is # None. This isn't supported here because (a) Trax shares weights by sharing # layer instances, but we need two separate instances to have mode == 'eval' # for the encoder but mode == 'predict' for the decoder; and (b) tl.Cache does # not work if its sublayers participate in any weight sharing. # Mode 'predict' means that the decoder should be run one token at a time. # The encoder only ever runs over full sequences, which is why it's switched # to 'eval' mode instead. in_encoder = PositionalEncoder( input_vocab_size, mode='eval' if mode == 'predict' else mode) if output_vocab_size is None: output_vocab_size = input_vocab_size out_encoder = PositionalEncoder(output_vocab_size, mode) # pylint: disable=g-complex-comprehension encoder_blocks = [ EncoderBlock( d_model, d_ff, n_heads, encoder_attention_type, dropout, ff_activation, ff_dropout, mode) for _ in range(n_encoder_layers)] # pylint: enable=g-complex-comprehension encoder = tl.Serial([ # tok_e mask_e tok_e tok_d tok_d in_encoder, # vec_e mask_e tok_e tok_d tok_d tl.Dup(), # vec_e1 vec_e2 mask_e tok_e tok_d tok_d tl.ReversibleSerial(encoder_blocks), tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), tl.LayerNorm(), ]) if mode == 'predict': encoder = tl.Cache(encoder) decoder_blocks = [] if isinstance(encoder_decoder_attention_type, (tuple, list)): assert n_decoder_layers % len(encoder_decoder_attention_type) == 0 else: encoder_decoder_attention_type = [encoder_decoder_attention_type] for layer_idx in range(n_decoder_layers): layer_attention_type = encoder_decoder_attention_type[ layer_idx % len(encoder_decoder_attention_type)] decoder_block = DecoderBlock( d_model, d_ff, d_attention_key, d_attention_value, n_heads, attention_type=layer_attention_type, dropout=dropout, ff_activation=ff_activation, ff_use_sru=ff_use_sru, ff_chunk_size=ff_chunk_size, mode=mode) decoder_blocks.append(decoder_block) # Assemble and return the model. return tl.Serial( # Input: encoder_side_tokens, decoder_side_tokens # Copy decoder tokens for use in loss. tl.Select([0, 0, 1, 1]), # tok_e tok_e tok_d tok_d tl.Branch([], [tl.PaddingMask(), tl.Fn('Squeeze', lambda x: jnp.squeeze(x, (1, 2)), n_out=1)]), # # tok_e mask_e tok_e tok_d tok_d # Encode. encoder, # vec_e mask_e tok_e tok_d tok_d # Decode. tl.Select([3, 0, 1, 2]), # tok_d vec_e mask_e tok_e tok_d tl.ShiftRight(mode=mode), # stok_d vec_e mask_e tok_e tok_d tl.Branch( [], _MaskOfRightShiftedArray() ), # stok_d mask_d vec_e mask_e tok_e tok_d out_encoder, # svec_d mask_d vec_e mask_e tok_e tok_d # Concat encoder and decoder, given their masks. tl.Select([2, 0, 3, 1]), # svec_d mask_d vec_e mask_e tok_e tok_d _ConcatWithPadding(), # vec_ed tok_e tok_d # Run (encoder and) decoder blocks. tl.Dup(), # vec_ed1 vec_ed2 tok_e tok_d tl.ReversibleSerial(decoder_blocks), # vec_ed1 vec_ed2 tok_e tok_d tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), # vec_ed tok_e tok_d tl.LayerNorm(), # vec_ed tok_e tok_d # Separate out the encoder part from the concatenated vector. tl.Select([0, 1, 2, 2]), # vec_ed tok_e tok_d tok_d _StripFromConcatenateWithPadding(), # vec_d tok_d # Map to output vocab. tl.Dense(output_vocab_size), # vec_d tok_d tl.LogSoftmax(), # vec_d tok_d )
def ReformerLM(vocab_size, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_layers=6, n_heads=8, dropout=0.1, max_len=2048, attention_type=tl.SelfAttention, axial_pos_shape=(), d_axial_pos_embs=None, ff_activation=tl.FastGelu, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0, loss_sparsity_type='mult', loss_sparsity=0, loss_d_lowrank=0, loss_sparsity_prob=None, attention_chunk_size=0, mode='train'): """Reversible transformer language model (only uses a decoder, no encoder). Args: vocab_size: int: vocab size d_model: int: depth of *each half* of the two-part features d_ff: int: depth of feed-forward layer d_attention_key: int: depth of key vector for each attention head d_attention_value: int: depth of value vector for each attention head n_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding attention_type: class: attention class to use, such as SelfAttention. axial_pos_shape: tuple of ints: input shape to use for the axial position encoding. If unset, axial position encoding is disabled. d_axial_pos_embs: tuple of ints: depth of position embedding for each axis. Tuple length must match axial_pos_shape, and values must sum to d_model. ff_activation: the non-linearity in feed-forward layer ff_use_sru: int; if > 0, we use this many SRU layers instead of feed-forward ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks ff_sparsity: int, if > 0 use sparse feed-forward block with this sparsity loss_sparsity_type: str, type of sparsity to used in loss layer. See SparseDenseWithOptions for options. None if no sparsity should be used. loss_sparsity: int, the sparsity for loss layer (if used) loss_d_lowrank: int, the dimensions for intermediate layer (if used) loss_sparsity_prob: float, the probability for sparse version of loss to be used. If None, only sparse version is used. attention_chunk_size: int, if > 0 run attention chunked at this size mode: str: 'train', 'eval', or 'predict' Returns: the layer. """ positional_encoding = ct.PositionalEncoder(mode, dropout, max_len, axial_pos_shape, d_axial_pos_embs) positional_embedder = [ tl.Embedding(vocab_size, d_model), tl.Dropout(rate=dropout, shared_axes=[-2], mode=mode), # pylint: disable=no-value-for-parameter positional_encoding, ] decoder_blocks = [] if isinstance(attention_type, (tuple, list)): assert n_layers % len(attention_type) == 0 else: attention_type = [attention_type] for layer_idx in range(n_layers): layer_attention_type = attention_type[layer_idx % len(attention_type)] decoder_block = DecoderBlock(d_model, d_ff, d_attention_key, d_attention_value, n_heads, attention_type=layer_attention_type, dropout=dropout, ff_activation=ff_activation, ff_dropout=dropout, ff_use_sru=ff_use_sru, ff_chunk_size=ff_chunk_size, ff_sparsity=ff_sparsity, attention_chunk_size=attention_chunk_size, mode=mode) decoder_blocks.append(decoder_block) dense_loss_layer = tl.SparseDenseWithOptions( vocab_size, d_input=d_model, sparsity_type=loss_sparsity_type, sparsity=loss_sparsity, d_lowrank=loss_d_lowrank, prob_sparse=loss_sparsity_prob, mode=mode) return tl.Serial( tl.ShiftRight(mode=mode), positional_embedder, tl.Dup(), tl.ReversibleSerial(decoder_blocks), tl.Concatenate(), # TODO(kitaev): Test whether dropout should go before or after the # LayerNorm, and whether dropout broadcasting is needed here. tl.LayerNorm(), tl.Dropout(rate=dropout, shared_axes=[-2], mode=mode), # pylint: disable=no-value-for-parameter dense_loss_layer, )
def Reformer(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, dropout=0.1, max_len=2048, ff_activation=tl.Relu, ff_dropout=None, mode='train', axial_pos_shape=None, d_axial_pos_embs=None, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0): """Reversible transformer encoder-decoder model. This model expects an input pair: target, source. At the moment, this model supports dot-product attention only. For the attention types in the Reformer paper, see ReformerLM. Args: input_vocab_size: int: vocab size of the source. output_vocab_size: int (optional): vocab size of the target. If None, the source and target are assumed to have the same vocab. d_model: int: depth of embedding d_ff: int: depth of feed-forward layer n_encoder_layers: int: number of encoder layers n_decoder_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding ff_activation: the non-linearity in feed-forward layer ff_dropout: float: (optional) separate dropout rate at feed-forward nonlinearity. This is called relu_dropout in T2T. mode: str: 'train' or 'eval' axial_pos_shape: tuple of ints: input shape to use for the axial position encoding. If unset, axial position encoding is disabled. d_axial_pos_embs: tuple of ints: depth of position embedding for each axis. Tuple length must match axial_pos_shape, and values must sum to d_model. ff_use_sru: int; if > 0, we use this many SRU layers instead of feed-forward ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks ff_sparsity: int, if > 0 use sparse feed-forward block with this sparsity Returns: A Reformer model as a layer that maps from a target, source pair to activations over a vocab set. """ in_encoder, out_encoder, output_vocab_size = ( ct.EmbeddingAndPositionalEncodings( input_vocab_size, d_model, mode, dropout, [-2], # dropout_shared_axes max_len, output_vocab_size=output_vocab_size, axial_pos_shape=axial_pos_shape, d_axial_pos_embs=d_axial_pos_embs)) # pylint: disable=g-complex-comprehension encoder_blocks = [ EncoderBlock(d_model, d_ff, n_heads, tl.SelfAttention, dropout, ff_activation, ff_dropout, mode=mode, ff_use_sru=ff_use_sru, ff_chunk_size=ff_chunk_size, ff_sparsity=ff_sparsity) for _ in range(n_encoder_layers) ] # pylint: enable=g-complex-comprehension encoder = tl.Serial([ in_encoder, tl.Dup(), tl.ReversibleSerial(encoder_blocks), tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), tl.LayerNorm(), ]) if mode == 'predict': encoder = tl.Cache(encoder) # pylint: disable=g-complex-comprehension encoder_decoder_blocks = [ EncoderDecoderBlock(d_model, d_ff, n_heads, dropout, ff_activation, ff_dropout, mode, ff_use_sru=ff_use_sru, ff_chunk_size=ff_chunk_size, ff_sparsity=ff_sparsity) for _ in range(n_decoder_layers) ] # pylint: enable=g-complex-comprehension # Assemble and return the model. return tl.Serial( # Input: encoder_side_tokens, decoder_side_tokens # Copy decoder tokens for use in loss. tl.Select([0, 1, 1]), # tok_e tok_d tok_d tl.Branch([], [ tl.PaddingMask(), tl.Fn('Squeeze', lambda x: jnp.squeeze(x, (1, 2)), n_out=1) ]), # # tok_e mask tok_d ..... # Encode. encoder, # vec_e mask tok_d ..... # Decode. tl.Select([2, 0, 1]), # tok_d vec_e mask ..... tl.ShiftRight(mode=mode), # tok_d vec_e mask ..... out_encoder, # vec_d vec_e mask ..... tl.Dup(), # vec_d1 vec_d2 vec_e mask ..... tl.ReversibleSerial(encoder_decoder_blocks), tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), # vec_d vec_e mask ..... tl.LayerNorm(), # vec_d vec_e mask ..... # Map to output vocab. tl.Select([0], n_in=3), # vec_d ..... tl.Dense(output_vocab_size), # vec_d ..... )
def Reformer(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, dropout=0.1, max_len=2048, ff_activation=tl.Relu, ff_dropout=None, mode='train'): """Reversible transformer encoder-decoder model. This model expects an input pair: target, source. At the moment, this model supports dot-product attention only. For the attention types in the Reformer paper, see ReformerLM. Args: input_vocab_size: int: vocab size of the source. output_vocab_size: int (optional): vocab size of the target. If None, the source and target are assumed to have the same vocab. d_model: int: depth of embedding d_ff: int: depth of feed-forward layer n_encoder_layers: int: number of encoder layers n_decoder_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding ff_activation: the non-linearity in feed-forward layer ff_dropout: float: (optional) separate dropout rate at feed-forward nonlinearity. This is called relu_dropout in T2T. mode: str: 'train' or 'eval' Returns: A Reformer model as a layer that maps from a target, source pair to activations over a vocab set. """ def PositionalEncoder(vocab_size, mode): # tokens --> vectors # TODO(kitaev): axial positional encoding is better for very long sequences. positional_encoding = tl.PositionalEncoding(max_len=max_len, dropout=dropout, mode=mode) return [ tl.Embedding(vocab_size, d_model), tl.Dropout(rate=dropout, shared_axes=[-2], mode=mode), positional_encoding, ] # Mode 'predict' means that the decoder should be run one token at a time. # The encoder only ever runs over full sequences, which is why it's switched # to 'eval' mode instead. in_encoder = PositionalEncoder(input_vocab_size, mode='eval' if mode == 'predict' else mode) if output_vocab_size is None: output_vocab_size = input_vocab_size out_encoder = PositionalEncoder(output_vocab_size, mode) # pylint: disable=g-complex-comprehension encoder_blocks = [ EncoderBlock(d_model, d_ff, n_heads, tl.SelfAttention, dropout, ff_activation, ff_dropout, mode=mode) for _ in range(n_encoder_layers) ] # pylint: enable=g-complex-comprehension encoder = tl.Serial([ in_encoder, tl.Dup(), tl.ReversibleSerial(encoder_blocks), tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), tl.LayerNorm(), ]) if mode == 'predict': encoder = tl.Cache(encoder) encoder_decoder_blocks = [ EncoderDecoderBlock(d_model, d_ff, n_heads, dropout, ff_activation, ff_dropout, mode) for _ in range(n_decoder_layers) ] # Assemble and return the model. return tl.Serial( # Input: encoder_side_tokens, decoder_side_tokens # Copy decoder tokens for use in loss. tl.Select([0, 1, 1]), # tok_e tok_d tok_d tl.Branch([], [ tl.PaddingMask(), tl.Fn('Squeeze', lambda x: jnp.squeeze(x, (1, 2)), n_out=1) ]), # # tok_e mask tok_d ..... # Encode. encoder, # vec_e mask tok_d ..... # Decode. tl.Select([2, 0, 1]), # tok_d vec_e mask ..... tl.ShiftRight(mode=mode), # tok_d vec_e mask ..... out_encoder, # vec_d vec_e mask ..... tl.Dup(), # vec_d1 vec_d2 vec_e mask ..... tl.ReversibleSerial(encoder_decoder_blocks), tl.Fn('XYAvg', lambda x, y: (x + y) / 2.0), # vec_d vec_e mask ..... tl.LayerNorm(), # vec_d vec_e mask ..... # Map to output vocab. tl.Select([0], n_in=3), # vec_d ..... tl.Dense(output_vocab_size), # vec_d ..... tl.LogSoftmax(), # vec_d ..... )
def Reformer(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, dropout=0.1, max_len=2048, ff_activation=tl.Relu, mode='train'): """Reversible transformer encoder-decoder model. This model expects an input pair: target, source. At the moment, this model supports dot-product attention only. For the attention types in the Reformer paper, see ReformerLM. Args: input_vocab_size: int: vocab size of the source. output_vocab_size: int (optional): vocab size of the target. If None, the source and target are assumed to have the same vocab. d_model: int: depth of embedding d_ff: int: depth of feed-forward layer n_encoder_layers: int: number of encoder layers n_decoder_layers: int: number of decoder layers n_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) max_len: int: maximum symbol length for positional encoding ff_activation: the non-linearity in feed-forward layer mode: str: 'train' or 'eval' Returns: A Reformer model as a layer that maps from a target, source pair to activations over a vocab set. """ # The current API for custom gradients assumes that a layer must be # differentiable wrt all of its inputs, but the Transformer puts bool-dtype # masks on the stack. This causes jax to error, even though the so-called # "gradient" wrt the masks is never actually computed. # TODO(kitaev): remove this hack. jax.api._check_inexact_input_vjp = lambda x: None # pylint: disable=protected-access def PositionalEncoder(vocab_size): # tokens --> vectors # TODO(kitaev): axial positional encoding is better for very long sequences. # TODO(kitaev): dropout=0.0 for tl.PositionalEncoding matches trax # Transformer, but may not be the right option in general. positional_encoding = tl.PositionalEncoding( max_len=max_len, dropout=0.0, mode=mode) return [ tl.Embedding(d_model, vocab_size), # TODO(kitaev): BroadcastedDropout? tl.Dropout(rate=dropout, mode=mode), positional_encoding, ] in_encoder = PositionalEncoder(input_vocab_size) out_encoder = (in_encoder if output_vocab_size is None else PositionalEncoder(output_vocab_size)) if output_vocab_size is None: output_vocab_size = input_vocab_size encoder_blocks = [ EncoderBlock( d_model, d_ff, n_heads, dropout, ff_activation, mode) for _ in range(n_encoder_layers)] encoder_decoder_blocks = [ EncoderDecoderBlock( d_model, d_ff, n_heads, dropout, ff_activation, mode) for _ in range(n_decoder_layers)] # Assemble and return the model. return tl.Serial( # Input: encoder_side_tokens, decoder_side_tokens # Copy decoder tokens for use in loss. tl.Select([0, 1, 1]), # tok_e tok_d tok_d # Encode. tl.Branch( in_encoder, [tl.PaddingMask(), tl.Fn(lambda x: np.squeeze(x, (1, 2)), n_out=1)] ), # vec_e mask tok_d ..... tl.Dup(), # vec_e1 vec_e2 mask tok_d ..... tl.ReversibleSerial(encoder_blocks), # vec_e1 vec_e2 mask tok_d ..... # The two sets of activations need to be reduced to one, in this case by # averaging them. Note that ReformerLM concatenates instead. Various # options (concat, average, add, keep only one, etc.) seem to perform # similarly. We don't concatenate here because we want exact parameter # parity with the standard Transformer. tl.Fn(lambda x, y: (x+y)/2.0), # vec_e mask tok_d ..... tl.LayerNorm(), # vec_e mask tok_d ..... # Decode. tl.Select([2, 0, 1]), # tok_d vec_e mask ..... tl.ShiftRight(), # tok_d vec_e mask ..... out_encoder, # vec_d vec_e mask ..... tl.Dup(), # vec_d1 vec_d2 vec_e mask ..... tl.ReversibleSerial(encoder_decoder_blocks), tl.Fn(lambda x, y: (x+y)/2.0), # vec_d vec_e mask ..... tl.LayerNorm(), # vec_d vec_e mask ..... # Map to output vocab. tl.Select([0], n_in=3), # vec_d ..... tl.Dense(output_vocab_size), # vec_d ..... tl.LogSoftmax(), # vec_d ..... )