def reset(self, output_dir): """Reset the model parameters. Restores the parameters from the given output_dir if a checkpoint exists, otherwise randomly initializes them. Does not re-jit the model. Args: output_dir: Output directory. """ self._output_dir = output_dir gfile.makedirs(output_dir) # Create summary writers and history. if self._should_write_summaries: self._train_sw = jaxboard.SummaryWriter(os.path.join( output_dir, 'train'), enable=self.is_chief) self._eval_sw = jaxboard.SummaryWriter(os.path.join( output_dir, 'eval'), enable=self.is_chief) # Reset the train and eval streams. self._train_stream = self._inputs.train_stream() # TODO(lukaszkaiser): add an option to evaluate exactly on the full eval # set by adding a padding and stopping the stream when too large. self._eval_stream = _repeat_stream(self._inputs.eval_stream) self._train_eval_stream = _repeat_stream( self._inputs.train_eval_stream) # Restore the training state. state = load_trainer_state(output_dir) self._step = state.step or 0 history = state.history self._lr_fn = self._lr_schedule(history) self._history = history if state.opt_state: opt_state = state.opt_state model_state = state.model_state else: opt_state, model_state = self._new_opt_state_and_model_state() model_state = layers.nested_map(self._maybe_replicate, model_state) self._opt_state = OptState( *layers.nested_map(self._maybe_replicate, opt_state)) self._model_state = model_state if not state.opt_state and self.is_chief: self._maybe_save_state(keep=False) self.update_nontrainable_params()
def predict(x, weights, state, rng): """Predict function jited and parallelized as requested.""" res, state = backend.combine_devices(model_predict( backend.reshape_by_device(x, n_devices), weights, state, np.stack(jax_random.split(rng, n_devices)))) return layers.nested_map(lambda y: np.mean(y, axis=0), res), state
def _sizes(x): """Get a structure of sizes for a structure of nested arrays.""" def size(x): try: return x.size except Exception: # pylint: disable=broad-except return 0 return layers.nested_map(size, x)
def _print_n_weights(opt_state, n_devices, step): """Print out the number of parameters.""" sizes = _sizes(opt_state.weights) if n_devices > 1: unreplicate = lambda x: x[0] single_weights = layers.nested_map(unreplicate, opt_state.weights) sizes = _sizes(single_weights) total_size = _nested_reduce(sum, sizes) step_log(step, 'Total number of trainable weights: %d' % total_size)
def _print_n_params(opt_state, n_devices, step): """Print out the number of parameters.""" sizes = layers.sizes(opt_state.params) if n_devices > 1: unreplicate = lambda x: x[0] single_params = layers.nested_map(unreplicate, opt_state.params) sizes = layers.sizes(single_params) total_size = layers.nested_reduce(sizes, sum) step_log(step, 'Total trainable parameters size: %d' % total_size)
def print_n_weights(self): """Prints the total count of trainable weights.""" opt_state = self._opt_state sizes = _sizes(opt_state.weights) if self._n_devices > 1: unreplicate = lambda x: x[0] single_weights = layers.nested_map(unreplicate, opt_state.weights) sizes = _sizes(single_weights) total_size = _nested_reduce(sum, sizes) self.log_step('Total number of trainable weights: %d' % total_size)
def _save_replicated(opt_state, step, history, model_state, n_devices, output_dir, keep): """Saves trainer state but given a possibly replicated opt_state.""" if n_devices > 1: first_replica = lambda x: x[0] opt_state = OptState(*layers.nested_map(first_replica, opt_state)) # This line, while optional, allows JAX to transfer arrays from the device to # the host in parallel, which is particularly important for cloud TPU. if backend.get_name() == 'jax': opt_state = jax.device_get(opt_state) save_trainer_state( TrainerState(opt_state=opt_state, step=step, history=history, model_state=model_state), output_dir, keep=keep)
def _train_step(self, next_train_batch): """Run one training step and update self._opt_state.""" # Calculate the current optimizer parameters. # TODO(pkozakowski): Optimizer parameters get polluted with model state, # which doesn't break anything but is weird. Filter it out. opt_param_updates = layers.nested_map( lambda x: self._maybe_replicate(np.array(x)), self.nontrainable_params) opt_state = self._opt_state opt_state.opt_params.update(opt_param_updates) # Run the update. (weights, slots), self._model_state, self._rngs = self._jit_update_fn( self._step, opt_state, next_train_batch, self._model_state, self._rngs) self._model_state = self._map_to_state_dicts(self._state_dicts_update) self._opt_state = opt_state._replace(weights=weights, slots=slots) self._step += 1
def save_state(self, keep): """Save trainer state given a possibly replicated opt_state.""" opt_state = self._opt_state if self._n_devices > 1: first_replica = lambda x: x[0] opt_state = OptState(*layers.nested_map(first_replica, opt_state)) # This line, while optional, allows JAX to transfer arrays from the device # to the host in parallel, which is particularly important for cloud TPU. if backend.get_name() == 'jax': opt_state = jax.device_get(opt_state) step, history, model_state = self._step, self._history, self._model_state output_dir = self._output_dir pkl_module = utils.get_pickle_module() weights_file = os.path.join(output_dir, 'model.pkl') with gfile.GFile(weights_file, 'wb') as f: pkl_module.dump((tuple(opt_state), step, history, model_state), f) if keep: weights_file = os.path.join(output_dir, 'model_{}.pkl'.format(step)) with gfile.GFile(weights_file, 'wb') as f: pkl_module.dump((tuple(opt_state), step, history, model_state), f) log('Model saved to %s' % weights_file, stdout=False)
def __init__(self, model, loss_fn, optimizer, lr_schedule, inputs, output_dir=None, random_seed=None, n_devices=None, save_steps=None, should_save_checkpoints=True, should_write_summaries=True, has_weights=False, nontrainable_param_map=None, mask_id=None, metrics=None): if save_steps is None: save_steps = [] self._save_steps = save_steps self._should_save_checkpoints = should_save_checkpoints self._should_write_summaries = should_write_summaries self._has_weights = has_weights self._mask_id = mask_id self._metrics_dict = _METRICS if metrics is None else metrics loss_fn = loss_fn(has_weights=has_weights, mask_id=mask_id) device_count = backend.device_count() n_devices = n_devices or device_count if backend.get_name() == 'jax': self._host_id = jax.host_id() self._host_count = jax.host_count() else: self._host_id = 0 self._host_count = 1 # TODO(lukaszkaiser): remove this restriction when possible. if n_devices != device_count and backend.get_name() == 'jax': raise ValueError('Jax cannot work yet with n_devices != all devices: ' '%d != %d' % (n_devices, device_count)) self._n_devices = n_devices # Simple differential seeding of RNG across hosts by host_id and time. if random_seed is None and self._host_count > 1: _, random_seed = divmod(int(time.time() * 1e6) + int(self._host_id * 1e6), 2**32) rng = get_random_number_generator_and_set_seed(random_seed) inputs = inputs(n_devices) self._inputs = inputs # Initialize the learning rate to a dummy value. It will be set in reset(). opt = optimizer(learning_rate=0.0) # Setup the model. model_train = model(mode='train') model_predict_eval = model(mode='eval') # Setup state. rng, init_rng = jax_random.split(rng) self._rngs = np.stack(jax_random.split(rng, n_devices)) first_shape = inputs.input_shape[0] # If the inputs are a tuple/list, add [None] (batch) to each element. if isinstance(first_shape, (list, tuple)): model_input_shape = tuple( tuple([None] + list(shape)) for shape in inputs.input_shape) model_target_shape = tuple( tuple([None] + list(shape)) for shape in inputs.target_shape) else: # Otherwise just add [None] to the input shape. model_input_shape = tuple([None] + list(inputs.input_shape)) model_target_shape = tuple([None] + list(inputs.target_shape)) # Change all None to 1 in input and target shape. model_input_shape = layers.nested_map(lambda x: x if x else 1, model_input_shape) model_target_shape = layers.nested_map(lambda x: x if x else 1, model_target_shape) def new_opt_state_and_model_state(input_shape, input_dtype, target_shape, target_dtype, rng): """Returns optimizer and model states suitable for training a model.""" # Combine inputs and targets on the stack. if not isinstance(input_dtype, (list, tuple)): input_dtype = [input_dtype] input_shape = [input_shape] if not isinstance(target_dtype, (list, tuple)): target_dtype = [target_dtype] target_shape = [target_shape] dtypes = list(input_dtype) + list(target_dtype) shapes = list(input_shape) + list(target_shape) if self._has_weights: shapes += list(target_shape) dtypes += [np.float32 for _ in target_dtype] input_signature = tuple(ShapeDtype(s, d) for (s, d) in zip(shapes, dtypes)) # We need to create a new model instance and not reuse `model_train` here, # because `m.initialize` puts cached parameter values in `m` and hence the # next call of `m.initialize` will give wrong results. m = layers.Serial(model(mode='train'), loss_fn) m._set_rng(rng) # pylint: disable=protected-access weights, state = m.initialize_once(input_signature) (slots, opt_params) = opt.tree_init(weights) return (OptState(weights, slots, opt_params), state) if _is_jit_init(): # JIT parameter initialization to avoid memory fragmentation new_opt_state_and_model_state = backend.jit(new_opt_state_and_model_state, static_argnums=(0, 1, 2, 3)) self._new_opt_state_and_model_state = ( lambda: new_opt_state_and_model_state( # pylint: disable=g-long-lambda model_input_shape, self._inputs.input_dtype, model_target_shape, self._inputs.target_dtype, init_rng)) # jit model_predict and update so they're fast # TODO(lukaszkaiser): the code below creates a layer computing # multiple metrics from a single model output; re-factor for clarity. dup_layer = layers.Dup3() if self._has_weights else layers.Dup2() def lower(layer): """Apply layer below the current inputs, targets, and possibly weights.""" if self._has_weights: # Apply layer below inputs, targets, and loss weights. return layers.Parallel([], [], [], layer) else: # Apply layer below inputs and targets. return layers.Parallel([], [], layer) metrics_layer = [] self._metrics = list(sorted(self._metrics_dict.keys())) for i, m in enumerate(reversed(self._metrics)): metric = self._metrics_dict[m](has_weights=self._has_weights, mask_id=self._mask_id) if i != len(self._metrics) - 1: metrics_layer.append(dup_layer) metrics_layer.append(lower(metric)) else: metrics_layer.append(metric) # TODO(lukaszkaiser): clean this up once layer API stabilizes. # For now, we need to initialize metric layers somehow, so here we go. # We assume that they do not have any parameters, so this is a dummy. dummy_shapes = ((1, 2), (1,), (1,)) if self._has_weights else ((1, 2), (1,)) dummy_dtypes = [np.float32] * (3 if self._has_weights else 2) dummy_signature = tuple(ShapeDtype(s, d) for s, d in zip(dummy_shapes, dummy_dtypes)) metrics_layer = layers.Serial(metrics_layer) metrics_layer._set_rng(init_rng) # pylint: disable=protected-access metrics_weights, metrics_state = ( metrics_layer.initialize_once(dummy_signature)) self._metrics_weights = layers.nested_map(self._maybe_replicate, metrics_weights) self._metrics_state = layers.nested_map(self._maybe_replicate, metrics_state) self._jit_eval = _jit_predict_fn( model_predict_eval, metrics_layer, n_devices) self._jit_update_fn = _jit_update_fn(model_train, loss_fn, opt, n_devices) self._model_train = model_train self._model_predict_eval = model_predict_eval self._loss_fn = loss_fn # TODO(pkozakowski): "Learning rate schedules" are currently able to control # control all optimizer parameters and model state, so let's rename them # accordingly. self._lr_schedule = lr_schedule if nontrainable_param_map is None: nontrainable_param_map = {} self._nontrainable_param_map = nontrainable_param_map # Those fields will be set in reset(). self._output_dir = None self._train_sw = None self._eval_sw = None self._history = None self._lr_fn = None self._opt_state = None self._step = None self._model_state = None if output_dir is not None: self.reset(output_dir)