Esempio n. 1
0
    def one_step(self, batch, rng, step=0, learning_rate=None):
        """Updates loss layer weights/state and optimizer slots by running one step.

    Args:
      batch: Batch of data to use for optimization.
      rng: Random number generator to use for running this step.
      step: Which step of the training are we running.
      learning_rate: Learning rate to use instead of the default one.

    Returns:
      Tuple (loss, stats) with new values from one step
      of training, where stats are current optimizer statistics.
    """
        # Update the learning rate if needed.
        if learning_rate is not None:
            self._opt_params['learning_rate'] = tl.for_n_devices(
                learning_rate, self._n_devices)

        # batch needs to be split across the local devices -- the difference
        # between _for_n_devices and _reshape_by_device is that the latter splits
        # the batch dim to batch // n_devices, vs _for_n_devices
        # broadcasts/replicates to n_devices dimension.
        if self._n_devices > 1:
            batch = tl.reshape_by_device(batch, self._n_devices)

        # separate rng needs to be created for each device
        if self._n_devices > 1:
            rng = jnp.stack(fastmath.random.split(rng, self._n_devices))

        weights = self._accelerated_loss_layer.weights
        state = self._accelerated_loss_layer.state
        if logging.vlog_is_on(1) and ((step & step - 1) == 0):
            # Prints every power of two, if debugging is enabled.
            logging.info('step[%d]', step)
            logging.info('opt_params[%s]', self._opt_params)
            logging.info('slots[%s]', self._slots)
            logging.info('weights[%s]', weights)
            logging.info('state[%s]', state)

        # NOTE: stats is a replicated dictionary of key to jnp arrays.
        (new_weights,
         new_slots), new_state, stats = self._accelerated_update_fn(
             (weights, self._slots), step, self._opt_params, batch, state, rng)

        if logging.vlog_is_on(1) and ((step & step - 1) == 0):
            logging.info('updated weights[%s]', new_weights)
            logging.info('stats[%s]', stats)

        self._accelerated_loss_layer.weights = new_weights
        self._accelerated_loss_layer.state = new_state
        self._slots = new_slots
        self._optimizer.slots = self._unreplicate(self._slots)
        return stats['loss'], stats
Esempio n. 2
0
    def one_step(self, batch, rng, step=0, learning_rate=None):
        """Runs one training step, to update model and optimizer parameters.

    Args:
      batch: Batch of labeled training data.
      rng: Single-use random number generator (JAX PRNG key).
      step: Training step number.
      learning_rate: Learning rate for the optimizer; if None, use optimizer's
          default learning rate.

    Returns:
      Tuple of (loss, optimizer_stats), with the newly computed loss and
      updated stats as reported by the optimizer.
    """
        if learning_rate is not None:
            self._opt_params['learning_rate'] = tl.for_n_devices(
                learning_rate, self._n_devices)

        # Split the batch across devices (batch_dim --> batch_dim // n_devices)
        # and create new rng's 1-1 with devices.
        if self._n_devices > 1:
            batch = tl.reshape_by_device(batch, self._n_devices)
            rng = jnp.stack(fastmath.random.split(rng, self._n_devices))

        weights = self._accelerated_model_with_loss.weights
        state = self._accelerated_model_with_loss.state
        if logging.vlog_is_on(1) and ((step & step - 1) == 0):
            # Prints every power of two, if debugging is enabled.
            logging.info('step[%d]', step)
            logging.info('opt_params[%s]', self._opt_params)
            logging.info('slots[%s]', self._slots)
            logging.info('weights[%s]', weights)
            logging.info('state[%s]', state)

        # NOTE: stats is a replicated dictionary of key to jnp arrays.
        (new_weights,
         new_slots), new_state, stats = self._accelerated_update_fn(
             (weights, self._slots), step, self._opt_params, batch, state, rng)

        if logging.vlog_is_on(1) and ((step & step - 1) == 0):
            logging.info('updated weights[%s]', new_weights)
            logging.info('stats[%s]', stats)

        self._accelerated_model_with_loss.weights = new_weights
        self._accelerated_model_with_loss.state = new_state
        self._slots = new_slots
        self._optimizer.slots = self._unreplicate(self._slots)
        return stats['loss'], stats
Esempio n. 3
0
def _reshape_by_device(x, n_devices):
    """Reshapes possibly nested x into a shape (n_devices, ...)."""
    return tl.reshape_by_device(x, n_devices)  # pylint: disable=protected-access
Esempio n. 4
0
 def _reshape_by_device(self, x):
   if self.n_devices == 1:
     return x
   return tl.reshape_by_device(x, self.n_devices)
Esempio n. 5
0
  def one_step(self, batch, rng, step=0, learning_rate=None):
    """Updates layers weights/state and optimizers slots by running one step.

    Args:
      batch: Batch of data to use for optimization.
      rng: Random number generator to use for running this step.
      step: Which step of the training are we running.
      learning_rate: Learning rate to use instead of the default one.

    Returns:
      Tuple (loss, stats) with new values from one step
      of training, where stats are all optimizer statistics.
    """
    # Update the learning rate if needed.
    if learning_rate is not None:
      self._replicated_loss_opt_params['learning_rate'] = tl.for_n_devices(
          learning_rate, self._n_devices)
      for (std_op, rev_ops) in self._replicated_opt_params:
        std_op['learning_rate'] = tl.for_n_devices(
            learning_rate, self._n_devices)
        for op in rev_ops:
          op['learning_rate'] = tl.for_n_devices(
              learning_rate, self._n_devices)

    # Batch needs to be split across the local devices -- the difference
    # between _for_n_devices and _reshape_by_device is that the latter splits
    # the batch dim to batch // n_devices, vs _for_n_devices
    # broadcasts/replicates to n_devices dimension.
    if self._n_devices > 1:
      batch = tl.reshape_by_device(batch, self._n_devices)
      step = jnp.repeat(step, self._n_devices)

    # Create separate rng for each device and layer.
    if self._n_devices == 1:
      rngs = fastmath.random.split(rng, self._n_layers)
    else:
      # Splitting by device first to be identical with default trainer.
      per_device_rng = fastmath.random.split(rng, self._n_devices)
      per_device_rngs = [
          fastmath.random.split(r, self._n_layers) for r in per_device_rng]
      rngs = [jnp.stack([r[i] for r in per_device_rngs])
              for i in range(self._n_layers)]
    # Group rngs by layer blocks.
    rng_blocks, rng_i = [], 0
    for _, rev_layers in self._blocks:
      l = len(rev_layers)
      rng_blocks.append((rngs[rng_i], rngs[rng_i + 1: rng_i + l + 1]))
      rng_i += l + 1

    # Run the layers forward upto the loss layer.
    stack = batch
    block_inputs_states = []
    for i, (std_layer, rev_layers) in enumerate(self._blocks):
      acc_std_layer_fn, acc_rev_layer_fns = self._accelerated_layer_fns[i]
      std_rng, rev_rngs = rng_blocks[i]
      # Run the standard layer.
      stack, std_inputs, std_state = self._run_forward_standard(
          stack, std_layer, acc_std_layer_fn, std_rng)

      # Run the reversible layers and collect old and new states.
      stack, rev_old_states, rev_new_states = self._run_forward_reversible(
          stack, rev_layers, acc_rev_layer_fns, rev_rngs)
      block_inputs_states.append(
          ((std_inputs, std_state), (rev_old_states, rev_new_states)))

    # Run the loss layer forward and backward with optimizer update.
    loss_state = self._replicate(self._loss_layer.state)
    loss_inputs = cb.inputs_from_stack(stack, self._loss_layer.n_in)
    loss_stats, grad_stack = self._run_backward_standard(
        None, step, self._loss_layer, loss_inputs,
        loss_state, self._loss_fbo, rngs[-1], self._loss_opt,
        self._replicated_loss_opt_params)
    stats = [loss_stats]

    # Run the layers backward and run optimizer updates.
    for i in range(len(self._blocks) - 1, -1, -1):
      std_layer, rev_layers = self._blocks[i]
      (std_inputs, std_state), (rev_old_states,
                                rev_new_states) = block_inputs_states[i]
      std_fbo, rev_fbos = self._fbos[i]
      std_opt, rev_opts = self._optimizers[i]
      std_rng, rev_rngs = rng_blocks[i]
      repl_std_opt_params, repl_rev_opts_params = self._replicated_opt_params[i]

      # Run reversible layers backward with optimizer update.
      stack, grad_stack, new_stats = self._run_backward_reversible(
          stack, grad_stack, step, rev_layers, rev_fbos, rev_old_states,
          rev_new_states, rev_rngs, rev_opts, repl_rev_opts_params)
      stats.extend(new_stats)

      # Run the standard layer forward-and-backward pass and optimizer update.
      std_layer_stats, grad_stack = self._run_backward_standard(
          grad_stack, step, std_layer, std_inputs, std_state, std_fbo, std_rng,
          std_opt, repl_std_opt_params)
      stack = cb.outputs_onto_stack(  # Put layer inputs on the stack.
          std_inputs, stack, std_layer.n_out)
      stats.append(std_layer_stats)

    # Join stats from different optimizers into one.
    joint_stats = {}
    for i, stat in enumerate(reversed(stats)):
      for k, v in stat.items():
        joint_stats[f'layer{i}/' + k] = v
    return stats[0]['loss'], joint_stats
Esempio n. 6
0
    def one_step(self, batch, rng, step=0, learning_rate=None):
        """Updates layers weights/state and optimizers slots by running one step.

    Args:
      batch: Batch of data to use for optimization.
      rng: Random number generator to use for running this step.
      step: Which step of the training are we running.
      learning_rate: Learning rate to use instead of the default one.

    Returns:
      Tuple (loss, stats) with new values from one step
      of training, where stats are all optimizer statistics.
    """
        # Update the learning rate if needed.
        if learning_rate is not None:
            self._replicated_loss_opt_params[
                'learning_rate'] = self._replicate_cpu(learning_rate)
            for (std_op, rev_ops) in self._replicated_opt_params:
                std_op['learning_rate'] = self._replicate_cpu(learning_rate)
                for op in rev_ops:
                    op['learning_rate'] = self._replicate_cpu(learning_rate)

        # Batch needs to be split across the local devices -- the difference
        # between _for_n_devices and _reshape_by_device is that the latter splits
        # the batch dim to batch // n_devices, vs _for_n_devices
        # broadcasts/replicates to n_devices dimension.
        step_int = step
        if self._n_devices > 1:
            batch = tl.reshape_by_device(batch, self._n_devices, pure_np=True)
            step = np.repeat(step, self._n_devices)

        # Create separate rng for each device and layer.
        if self._n_devices == 1:
            rngs = fastmath.random.split(rng, self._n_layers)
        else:
            # JIT the function and run it on CPU to avoid memory fragmentation.
            rngs = self._jit_per_device_rngs(tl.on_cpu(rng))
        # Group rngs by layer blocks.
        rng_blocks, rng_i = [], 0
        for _, rev_layers in self._blocks:
            l = len(rev_layers)
            rng_blocks.append((rngs[rng_i], rngs[rng_i + 1:rng_i + l + 1]))
            rng_i += l + 1

        # Run the layers forward upto the loss layer.
        if self._do_free:
            self._free_accelerators()
        process = psutil.Process(os.getpid())
        if isinstance(batch, (list, tuple)):
            batch_shapes = [x.shape for x in batch]
        else:
            batch_shapes = batch.shape
        logging.info('running step %d on shapes %s', step_int,
                     str(batch_shapes))
        if step_int % self._n_steps_per_log == 1:
            logging.info('run fwd: cpu memory use (MB): %.2f',
                         process.memory_info().rss / float(1024 * 1024))

        stack = batch
        block_inputs_states = []
        for i, (std_layer, rev_layers) in enumerate(self._blocks):
            acc_std_layer_fn, acc_rev_layer_fns = self._accelerated_layer_fns[
                i]
            std_rng, rev_rngs = rng_blocks[i]
            # Run the standard layer.
            stack, std_inputs, std_state = self._run_forward_standard(
                stack, std_layer, acc_std_layer_fn, std_rng, step_int)

            # Run the reversible layers and collect old and new states.
            stack, rev_old_states, rev_new_states = self._run_forward_reversible(
                stack, rev_layers, acc_rev_layer_fns, rev_rngs, step_int)
            block_inputs_states.append(
                tl.on_cpu(((std_inputs, std_state), (rev_old_states,
                                                     rev_new_states))))

        # Run the loss layer forward and backward with optimizer update.
        if step_int % self._n_steps_per_log == 1:
            logging.info('run loss: cpu memory use (MB): %.2f',
                         process.memory_info().rss / float(1024 * 1024))
        loss_state = self._replicate(self._loss_layer.state)
        loss_inputs = cb.inputs_from_stack(stack, self._loss_layer.n_in)
        loss_stats, grad_stack = self._run_backward_standard(
            None, step, self._loss_layer, loss_inputs, loss_state,
            self._loss_fbo, rngs[-1], self._loss_opt,
            self._replicated_loss_opt_params)
        self._collect_weights(self._loss_layer)
        stats = [tl.on_cpu(loss_stats)]

        # De-fragment memory.
        if self._do_free:
            stack, grad_stack = tl.on_cpu(stack), tl.on_cpu(grad_stack)
            self._free_accelerators()

        # Run the layers backward and run optimizer updates.
        if step_int % self._n_steps_per_log == 1:
            logging.info('run bwd: cpu memory use (MB): %.2f',
                         process.memory_info().rss / float(1024 * 1024))
        for i in range(len(self._blocks) - 1, -1, -1):
            std_layer, rev_layers = self._blocks[i]
            (std_inputs, std_state), (rev_old_states,
                                      rev_new_states) = block_inputs_states[i]
            std_fbo, rev_fbos = self._fbos[i]
            std_opt, rev_opts = self._optimizers[i]
            std_rng, rev_rngs = rng_blocks[i]
            repl_std_opt_params, repl_rev_opts_params = self._replicated_opt_params[
                i]

            # Run reversible layers backward with optimizer update.
            stack, grad_stack, new_stats = self._run_backward_reversible(
                stack, grad_stack, step, rev_layers, rev_fbos, rev_old_states,
                rev_new_states, rev_rngs, rev_opts, repl_rev_opts_params)
            stats.extend(tl.on_cpu(new_stats))

            # Run the standard layer forward-and-backward pass and optimizer update.
            std_layer_stats, grad_stack = self._run_backward_standard(
                grad_stack, step, std_layer, std_inputs, std_state, std_fbo,
                std_rng, std_opt, repl_std_opt_params)
            stack = cb.outputs_onto_stack(  # Put layer inputs on the stack.
                std_inputs, stack, std_layer.n_out)
            stats.append(tl.on_cpu(std_layer_stats))

            # Collect lazily unreplicated layer weights.
            for rev_layer_id in range(self._n_async_layers):
                self._collect_weights(rev_layers[rev_layer_id])
            self._collect_weights(std_layer)

        # Join stats from different optimizers into one.
        joint_stats = {}
        for i, stat in enumerate(reversed(stats)):
            for k, v in stat.items():
                joint_stats[f'layer{i}/' + k] = v
        return stats[0]['loss'], joint_stats
Esempio n. 7
0
    def one_step(self, batch, rng, step=0, learning_rate=None):
        """Updates layers weights/state and optimizers slots by running one step.

    Args:
      batch: Batch of data to use for optimization.
      rng: Random number generator to use for running this step.
      step: Which step of the training are we running.
      learning_rate: Learning rate to use instead of the default one.

    Returns:
      Tuple (loss, stats) with new values from one step
      of training, where stats are all optimizer statistics.
    """
        # Update the learning rate if needed.
        if learning_rate is not None:
            for op in self._replicated_opt_params:
                op['learning_rate'] = tl.for_n_devices(learning_rate,
                                                       self._n_devices)

        # Batch needs to be split across the local devices -- the difference
        # between _for_n_devices and _reshape_by_device is that the latter splits
        # the batch dim to batch // n_devices, vs _for_n_devices
        # broadcasts/replicates to n_devices dimension.
        if self._n_devices > 1:
            batch = tl.reshape_by_device(batch, self._n_devices)
            step = jnp.repeat(step, self._n_devices)

        # Separate rng needs to be created for each device.
        if self._n_devices == 1:
            rngs = fastmath.random.split(rng, len(self._reversible_layers) + 2)
        else:
            # Splitting by device first to be identical with default trainer.
            per_device_rng = fastmath.random.split(rng, self._n_devices)
            per_device_rngs = [
                fastmath.random.split(r,
                                      len(self._reversible_layers) + 2)
                for r in per_device_rng
            ]
            rngs = [
                jnp.stack([r[i] for r in per_device_rngs])
                for i in range(len(self._reversible_layers) + 2)
            ]

        # Run the layers forward upto the loss layer.
        stack = batch

        # Run the first layer.
        first_layer_inputs = _inputs_from_stack(self._first_layer, stack)
        first_layer_weights = self._replicate(self._first_layer.weights)
        first_layer_state = self._replicate(self._first_layer.state)
        outputs, first_layer_new_state = self._accelerated_first_layer_fn(
            first_layer_inputs, first_layer_weights, first_layer_state,
            rngs[0])
        stack = _outputs_onto_stack(self._first_layer, outputs, stack)

        # Run the reversible layers and collect old and new states.
        old_states, new_states = [], []
        for i, layer in enumerate(self._reversible_layers):
            weights = self._replicate(
                layer.weights)  # also copies cpu -> accelerator
            state = self._replicate(layer.state)
            old_states.append(state)
            inputs = _inputs_from_stack(layer, stack)
            outputs, new_state = self._accelerated_reversible_layers_fns[i](
                inputs, weights, state, rngs[i + 1])
            stack = _outputs_onto_stack(layer, outputs, stack)
            new_states.append(new_state)

        # Run the loss layer forward and backward with optimizer update.
        loss_weights = self._replicate(self._loss_layer.weights)
        loss_state = self._replicate(self._loss_layer.state)
        loss_inputs = _inputs_from_stack(self._loss_layer, stack)
        loss_slots = self._replicate(self._optimizers[-1].slots)
        new_weights, new_state, new_slots, grad_stack, loss_stats = self._loss_fbo(
            loss_inputs, loss_weights, loss_state, loss_slots,
            self._replicated_opt_params[-1], rngs[-1], step)
        stats = [loss_stats]
        self._loss_layer.weights = self._unreplicate(
            new_weights)  # acceler. -> cpu
        self._loss_layer.state = self._unreplicate(new_state)
        self._optimizers[-1].slots = self._unreplicate(new_slots)

        # Run reversible layers backward with optimizer update.
        counter = -1
        for layer, reverse_and_fbo, old_state, new_state, rng in reversed(
                list(
                    zip(self._reversible_layers, self._reverse_and_fbos,
                        old_states, new_states, rngs[1:-1]))):
            counter -= 1
            # We are running backwards and reversing, so we get *outputs* from stack.
            outputs = _inputs_from_stack(layer, stack, layer.n_out)
            grads = _inputs_from_stack(layer, grad_stack, layer.n_out)
            slots = self._replicate(self._optimizers[counter].slots)
            opt_params = self._replicated_opt_params[counter]
            weights = self._replicate(layer.weights)  # cpu -> accelerator
            new_weights, new_slots, inputs, grads, layer_stats = reverse_and_fbo(
                outputs, weights, old_state, new_state, slots, opt_params, rng,
                step, grads)
            layer.weights = self._unreplicate(
                new_weights)  # accelerator -> cpu
            layer.state = self._unreplicate(new_state)
            self._optimizers[counter].slots = self._unreplicate(new_slots)
            stats.append(layer_stats)
            stack = _outputs_onto_stack(layer, inputs, stack, layer.n_out,
                                        layer.n_in)
            grad_stack = _outputs_onto_stack(layer, grads, grad_stack,
                                             layer.n_out, layer.n_in)

        # Run the first layer forward-and-backward pass and optimizer update.
        grads = _inputs_from_stack(self._first_layer, grad_stack,
                                   self._first_layer.n_out)
        slots = self._replicate(self._optimizers[0].slots)
        new_weights, new_state, new_slots, first_layer_stats = self._first_fbo(
            first_layer_inputs, first_layer_weights, first_layer_new_state,
            slots, self._replicated_opt_params[0], rngs[0], step, grads)
        stats.append(first_layer_stats)
        self._first_layer.weights = self._unreplicate(new_weights)
        self._first_layer.state = self._unreplicate(new_state)
        self._optimizers[0].slots = self._unreplicate(new_slots)

        return stats[0]['loss'], stats