Esempio n. 1
0
    def _calc_adv_weights(self, adv, valid_mask):
        weights = jnp.exp(adv / self._temperature)

        valid_weights = weights[valid_mask]
        weights_mean = jnp.mean(valid_weights)
        weights_min = jnp.min(valid_weights)
        weights_max = jnp.max(valid_weights)

        weights = jnp.minimum(weights, self._weight_clip)
        return weights, weights_mean, weights_min, weights_max
Esempio n. 2
0
    def train_epoch(self, evaluate=True):
        epoch_start_time = time.time()

        # Evaluate the policy.
        policy_eval_start_time = time.time()
        if evaluate and (self.epoch + 1) % self._eval_every_n == 0:
            self.evaluate()
        policy_eval_time = policy_based_utils.get_time(policy_eval_start_time)

        def write_metric(key, value):
            self._train_sw.scalar(key, value, step=self.epoch)
            self._history.append('train', key, self.epoch, value)

        # Get fresh trajectories every time.
        self._should_reset_train_env = True

        trajectory_collection_start_time = time.time()
        logging.vlog(1, 'AWR epoch [% 6d]: collecting trajectories.',
                     self._epoch)
        trajs, _, timing_info, self._model_state = self.collect_trajectories(
            train=True, temperature=1.0, raw_trajectory=True)
        del timing_info
        trajectory_collection_time = policy_based_utils.get_time(
            trajectory_collection_start_time)

        logging.vlog(1, 'AWR epoch [% 6d]: n_trajectories [%s].', self._epoch,
                     len(trajs))

        # Convert these into numpy now.
        def extract_obs_act_rew_dones(traj_np):
            return traj_np[0], traj_np[1], traj_np[2], traj_np[4]

        trajs_np = [extract_obs_act_rew_dones(traj.as_numpy) for traj in trajs]

        # number of new actions.
        new_sample_count = sum(traj[1].shape[0] for traj in trajs_np)
        self._n_observations_seen += new_sample_count
        logging.vlog(1, 'AWR epoch [% 6d]: new_sample_count [%d].',
                     self._epoch, new_sample_count)

        if self._should_write_summaries:
            write_metric('trajs/batch', len(trajs))
            write_metric('trajs/new_sample_count', new_sample_count)

        # The number of trajectories, i.e. `B`can keep changing from iteration to
        # iteration, since we are capped on the number of observations requested.
        # So let's operate on each trajectory on this own?

        # TODO(afrozm): So should our batches look like (B, T+1, *OBS) or B
        # different examples of (T+1, *OBS) each. Since B can keep changing?

        # Add these to the replay buffer.
        for traj in trajs:
            _ = self._replay_buffer.store(traj)

        rewards = jnp.array([jnp.sum(traj[2]) for traj in trajs_np])
        avg_reward = jnp.mean(rewards)
        std_reward = jnp.std(rewards)
        max_reward = jnp.max(rewards)
        min_reward = jnp.min(rewards)

        self._log('train', 'train/reward_mean_truncated', avg_reward)
        if evaluate and not self._separate_eval and self._should_write_summaries:
            metrics = {'raw': {1.0: {'mean': avg_reward, 'std': std_reward}}}
            policy_based_utils.write_eval_reward_summaries(
                metrics, self._log, self.epoch)

        logging.vlog(
            1, 'AWR epoch [% 6d]: Rewards avg=[%0.2f], max=[%0.2f], '
            'min=[%0.2f].', self.epoch, avg_reward, max_reward, min_reward)

        if self._should_write_summaries:
            write_metric('reward/avg', avg_reward)
            write_metric('reward/std', std_reward)
            write_metric('reward/max', max_reward)
            write_metric('reward/min', min_reward)

        # Wrap these observations/rewards inside ReplayBuffer.
        idx, valid_mask, valid_idx = self._replay_buffer.get_valid_indices()

        # pylint: disable=g-complex-comprehension
        observations = [
            self._replay_buffer.get(
                replay_buffer.ReplayBuffer.OBSERVATIONS_KEY,
                idx[start_idx:end_plus_1_idx])
            for (start_idx,
                 end_plus_1_idx) in self._replay_buffer.iterate_over_paths(idx)
        ]

        rewards = [
            self._replay_buffer.get(replay_buffer.ReplayBuffer.REWARDS_KEY,
                                    idx[start_idx:end_plus_1_idx][:-1])
            for (start_idx,
                 end_plus_1_idx) in self._replay_buffer.iterate_over_paths(idx)
        ]
        # pylint: enable=g-complex-comprehension

        t_final = awr_utils.padding_length(rewards, boundary=self._boundary)
        logging.vlog(1, 'AWR epoch [% 6d]: t_final [%s].', self._epoch,
                     t_final)

        if self._should_write_summaries:
            write_metric('trajs/t_final', t_final)

        # These padded observations are over *all* the non-final observations in
        # the entire replay buffer.
        # Shapes:
        # padded_observations      = (B, T + 1, *OBS)
        # padded_observations_mask = (B, T + 1)
        padded_observations, padded_observations_mask = (
            awr_utils.pad_array_to_length(observations, t_final + 1))

        batch = len(observations)
        self._check_shapes('padded_observations',
                           '(batch, t_final + 1)',
                           padded_observations, (batch, t_final + 1),
                           array_prefix=2)
        self._check_shapes('padded_observations_mask', '(batch, t_final + 1)',
                           padded_observations_mask, (batch, t_final + 1))

        # Shapes:
        # padded_rewards      = (B, T)
        # padded_rewards_mask = (B, T)
        padded_rewards, padded_rewards_mask = awr_utils.pad_array_to_length(
            rewards, t_final)
        self._check_shapes('padded_rewards', '(batch, t_final)',
                           padded_rewards, (batch, t_final))
        self._check_shapes('padded_rewards_mask', '(batch, t_final)',
                           padded_rewards_mask, (batch, t_final))

        # Shapes:
        # lengths = (B,)
        lengths = jnp.sum(padded_rewards_mask, axis=1, dtype=jnp.int32)
        self._check_shapes('lengths', '(batch,)', lengths, (batch, ))

        # TODO(pkozakowski): Pass the actual actions here, to enable autoregressive
        # action sampling.
        dummy_actions = jnp.zeros(
            (batch, t_final + 1) + self._action_shape,
            self._action_dtype,
        )

        # Shapes:
        # log_probabs_traj       = (B, T + 1, #controls, #actions)
        # value_predictions_traj = (B, T + 1)
        log_probabs_traj, value_predictions_traj, self._model_state, unused_rng = (
            self._policy_fun_all_timesteps(padded_observations, lengths,
                                           self._model_state, self._get_rng()))
        self._check_shapes(
            'log_probabs_traj', '(batch, t_final + 1, n_controls, n_actions)',
            log_probabs_traj,
            (batch, t_final + 1, self._n_controls, self._n_actions))
        self._check_shapes('value_predictions_traj', '(batch, t_final + 1)',
                           value_predictions_traj, (batch, t_final + 1))

        # Zero out the padding's value predictions, since the net may give some
        # prediction to the padding observations.
        value_predictions_traj *= padded_observations_mask

        # Compute td-lambda returns, and reshape to match value_predictions_traj.
        list_td_lambda_returns = awr_utils.batched_compute_td_lambda_return(
            padded_rewards, padded_rewards_mask, value_predictions_traj,
            padded_observations_mask, self._gamma, self._td_lambda)

        if logging.vlog_is_on(1) and list_td_lambda_returns:
            l = len(list_td_lambda_returns)
            logging.vlog(1, f'Len of list_td_lambda_returns: {l}.')
            self._log_shape('td_lambda_returns[0]', list_td_lambda_returns[0])

        # pad an extra 0 for each to match lengths of value predictions.
        list_target_values = [
            np.pad(l, (0, 1), 'constant') for l in list_td_lambda_returns
        ]

        if batch != len(list_target_values):
            raise ValueError(f'batch != len(list_target_values) : '
                             f'{batch} vs {len(list_target_values)}')

        # Shape: (len(idx),)
        target_values = np.concatenate(list_target_values)
        self._check_shapes('target_values', '(len(idx),)', target_values,
                           (len(idx), ))

        # Shape: (len(idx),)
        vals = self.flatten_vals(value_predictions_traj,
                                 padded_observations_mask)
        self._check_shapes('vals', '(len(idx),)', vals, (len(idx), ))

        # Calculate advantages.
        adv, norm_adv, adv_mean, adv_std = self._calc_adv(
            target_values, vals, valid_mask)
        self._check_shapes('norm_adv', '(len(idx),)', norm_adv, (len(idx), ))

        adv_weights, adv_weights_mean, adv_weights_min, adv_weights_max = (
            self._calc_adv_weights(norm_adv, valid_mask))
        self._check_shapes('adv_weights', '(len(idx),)', adv_weights,
                           (len(idx), ))

        del adv, adv_mean, adv_std
        del adv_weights_min, adv_weights_max, adv_weights_mean

        combined_steps = int(
            jnp.ceil(self._optimization_steps * new_sample_count /
                     self._num_samples_to_collect))
        optimization_start_time = time.time()
        combined_losses = self._update_combined(combined_steps, valid_idx,
                                                target_values, adv_weights)
        optimization_time = policy_based_utils.get_time(
            optimization_start_time)

        self._epoch += 1

        if self._should_write_summaries:
            write_metric('combined/optimization_steps', combined_steps)
            epoch_time = policy_based_utils.get_time(epoch_start_time)
            timing_dict = {
                'epoch': epoch_time,
                'trajectory_collection': trajectory_collection_time,
                'optimization': optimization_time,
                'policy_eval': policy_eval_time,
            }

            if self._should_write_summaries:
                for k, v in timing_dict.items():
                    write_metric('timing/{}'.format(k), v)

            # Only dump the average post losses.
            if combined_losses:
                for k, v in combined_losses.items():
                    if 'post_entropy' in k:
                        write_metric(k.replace('post_entropy', 'entropy'), v)
                    if 'post_loss' in k:
                        write_metric(k.replace('post_loss', 'loss'), v)

        self.flush_summaries()
Esempio n. 3
0
  def train_epoch(self, evaluate=True):
    def write_metric(key, value):
      self._train_sw.scalar(key, value, step=self.epoch)
      self._history.append('train', key, self.epoch, value)

    # Get fresh trajectories every time.
    self._should_reset_train_env = True

    trajectory_collection_start_time = time.time()
    logging.vlog(1, 'AWR epoch [% 6d]: collecting trajectories.', self._epoch)
    trajs, _, timing_info, self._model_state = self.collect_trajectories(
        train=True, temperature=1.0, raw_trajectory=True)
    del timing_info
    trajectory_collection_time = ppo.get_time(trajectory_collection_start_time)

    # Convert these into numpy now.
    def extract_obs_act_rew_dones(traj_np):
      return traj_np[0], traj_np[1], traj_np[2], traj_np[4]

    trajs_np = [extract_obs_act_rew_dones(traj.as_numpy) for traj in trajs]

    # number of new actions.
    new_sample_count = sum(traj[1].shape[0] for traj in trajs_np)

    if self._should_write_summaries:
      write_metric('trajs/batch', len(trajs))
      write_metric('trajs/new_sample_count', new_sample_count)

    # The number of trajectories, i.e. `B`can keep changing from iteration to
    # iteration, since we are capped on the number of observations requested.
    # So let's operate on each trajectory on this own?

    # TODO(afrozm): So should our batches look like (B, T+1, *OBS) or B
    # different examples of (T+1, *OBS) each. Since B can keep changing?

    # Add these to the replay buffer.
    for traj in trajs:
      _ = self._replay_buffer.store(traj)

    if self._should_write_summaries:
      rewards = np.array([np.sum(traj[2]) for traj in trajs_np])
      avg_reward = np.mean(rewards)
      std_reward = np.std(rewards)
      max_reward = np.max(rewards)
      min_reward = np.min(rewards)

      write_metric('reward/avg', avg_reward)
      write_metric('reward/std', std_reward)
      write_metric('reward/max', max_reward)
      write_metric('reward/min', min_reward)

    # Wrap these observations/rewards inside ReplayBuffer.
    idx, valid_mask, valid_idx = self._replay_buffer.get_valid_indices()

    # pylint: disable=g-complex-comprehension
    observations = [
        self._replay_buffer.get(replay_buffer.ReplayBuffer.OBSERVATIONS_KEY,
                                idx[start_idx:end_plus_1_idx])
        for (start_idx,
             end_plus_1_idx) in self._replay_buffer.iterate_over_paths(idx)
    ]

    rewards = [
        self._replay_buffer.get(replay_buffer.ReplayBuffer.REWARDS_KEY,
                                idx[start_idx:end_plus_1_idx][:-1])
        for (start_idx,
             end_plus_1_idx) in self._replay_buffer.iterate_over_paths(idx)
    ]
    # pylint: enable=g-complex-comprehension

    t_final = awr_utils.padding_length(rewards, boundary=self._boundary)

    if self._should_write_summaries:
      write_metric('trajs/t_final', t_final)

    # These padded observations are over *all* the non-final observations in
    # the entire replay buffer.
    # Shapes:
    # padded_observations      = (B, T + 1, *OBS)
    # padded_observations_mask = (B, T + 1)
    padded_observations, padded_observations_mask = (
        awr_utils.pad_array_to_length(observations, t_final + 1)
    )

    batch = len(observations)
    if ((batch, t_final + 1) != padded_observations.shape[:2] or
        (batch, t_final + 1) != padded_observations_mask.shape):
      raise ValueError(
          f'Shapes mismatch, batch {batch}, t_final {t_final}'
          f'padded_observations.shape {padded_observations.shape}'
          f'padded_observations_mask.shape {padded_observations_mask.shape}')

    # Shapes:
    # padded_rewards      = (B, T)
    # padded_rewards_mask = (B, T)
    padded_rewards, padded_rewards_mask = awr_utils.pad_array_to_length(
        rewards, t_final)
    if ((padded_rewards.shape != (batch, t_final)) or
        (padded_rewards_mask.shape != (batch, t_final))):
      raise ValueError(
          f'Shapes mismatch, batch {batch}, t_final {t_final}'
          f'padded_rewards.shape {padded_rewards.shape}')

    # Shapes:
    # log_probabs_traj       = (B, T + 1, #actions)
    # value_predictions_traj = (B, T + 1)
    (log_probabs_traj, value_predictions_traj) = (
        self._policy_and_value_net_apply(
            padded_observations,
            weights=self._policy_and_value_net_weights,
            state=self._model_state,
            rng=self._get_rng(),
        ))

    if ((batch, t_final + 1) != log_probabs_traj.shape[:2] or
        (batch, t_final + 1) != value_predictions_traj.shape):
      raise ValueError(
          f'Shapes mismatch, batch {batch}, t_final {t_final}'
          f'log_probabs_traj.shape {log_probabs_traj.shape}'
          f'value_predictions_traj.shape {value_predictions_traj.shape}')

    # Zero out the padding's value predictions, since the net may give some
    # prediction to the padding observations.
    value_predictions_traj *= padded_observations_mask

    # Compute td-lambda returns, and reshape to match value_predictions_traj.
    list_td_lambda_returns = awr_utils.batched_compute_td_lambda_return(
        padded_rewards, padded_rewards_mask, value_predictions_traj,
        padded_observations_mask, self._gamma, self._td_lambda)
    # pad an extra 0 for each to match lengths of value predictions.
    list_target_values = [
        onp.pad(l, (0, 1), 'constant') for l in list_td_lambda_returns
    ]

    if batch != len(list_target_values):
      raise ValueError(f'batch != len(list_target_values) : '
                       f'{batch} vs {len(list_target_values)}')

    # Shape: (len(idx),)
    target_values = onp.concatenate(list_target_values)
    if target_values.shape != (len(idx),):
      raise ValueError(f'target_values.shape != (len(idx),) = '
                       f'{target_values.shape} != ({len(idx)},)')

    # Shape: (len(idx),)
    target_values = onp.concatenate(list_target_values)

    vals = self.flatten_vals(value_predictions_traj, padded_observations_mask)

    if vals.shape != target_values.shape:
      raise ValueError(f'vals.shape != target_values.shape : '
                       f'{vals.shape} vs {target_values.shape}')

    # Calculate advantages.
    adv, norm_adv, adv_mean, adv_std = self._calc_adv(
        target_values, vals, valid_mask)

    adv_weights, adv_weights_mean, adv_weights_min, adv_weights_max = (
        self._calc_adv_weights(norm_adv, valid_mask)
    )

    del adv, adv_mean, adv_std
    del adv_weights_min, adv_weights_max, adv_weights_mean

    combined_steps = int(
        np.ceil(self._optimization_steps * new_sample_count /
                self._num_samples_to_collect))
    combined_losses = self._update_combined(combined_steps, valid_idx,
                                            target_values, adv_weights)

    if self._should_write_summaries:
      write_metric('combined/optimization_steps', combined_steps)

      timing_dict = {
          'trajectory_collection': trajectory_collection_time,
          # 'epoch': epoch_time,
          # 'policy_eval': policy_eval_time,
          # 'preprocessing': preprocessing_time,
          # 'log_prob_recompute': log_prob_recompute_time,
          # 'loss_compute': loss_compute_time,
          # 'optimization': optimization_time,
          # 'policy_save': policy_save_time,
      }

      if self._should_write_summaries:
        for k, v in timing_dict.items():
          write_metric('timing/{}'.format(k), v)

      # Only dump the average post losses.
      if combined_losses:
        for k, v in combined_losses.items():
          if 'post_entropy' in k:
            write_metric(k.replace('post_entropy', 'entropy'), v)
          if 'post_loss' in k:
            write_metric(k.replace('post_loss', 'loss'), v)

    self._epoch += 1

    self.flush_summaries()