Esempio n. 1
0
    def train_epoch(self, evaluate=True):
        """Train one PPO epoch."""
        epoch_start_time = time.time()

        # Evaluate the policy.
        policy_eval_start_time = time.time()
        if evaluate and (self._epoch + 1) % self._eval_every_n == 0:
            self._rng, key = jax_random.split(self._rng, num=2)
            self.evaluate()

        policy_eval_time = ppo.get_time(policy_eval_start_time)

        trajectory_collection_start_time = time.time()
        logging.vlog(1, 'PPO epoch [% 6d]: collecting trajectories.',
                     self._epoch)
        self._rng, key = jax_random.split(self._rng)
        trajs, _, timing_info, self._model_state = self.collect_trajectories(
            train=True, temperature=1.0)
        trajs = [(t[0], t[1], t[2], t[4]) for t in trajs]
        self._should_reset = False
        trajectory_collection_time = ppo.get_time(
            trajectory_collection_start_time)

        logging.vlog(1, 'Collecting trajectories took %0.2f msec.',
                     trajectory_collection_time)

        rewards = np.array([np.sum(traj[2]) for traj in trajs])
        avg_reward = np.mean(rewards)
        std_reward = np.std(rewards)
        max_reward = np.max(rewards)
        min_reward = np.min(rewards)

        self._log('train', 'train/reward_mean_truncated', avg_reward)
        if evaluate and not self._separate_eval:
            metrics = {'raw': {1.0: {'mean': avg_reward, 'std': std_reward}}}
            ppo.write_eval_reward_summaries(metrics, self._log, self._epoch)

        logging.vlog(1,
                     'Rewards avg=[%0.2f], max=[%0.2f], min=[%0.2f], all=%s',
                     avg_reward, max_reward, min_reward,
                     [float(np.sum(traj[2])) for traj in trajs])

        logging.vlog(
            1, 'Trajectory Length average=[%0.2f], max=[%0.2f], min=[%0.2f]',
            float(sum(len(traj[0]) for traj in trajs)) / len(trajs),
            max(len(traj[0]) for traj in trajs),
            min(len(traj[0]) for traj in trajs))
        logging.vlog(2, 'Trajectory Lengths: %s',
                     [len(traj[0]) for traj in trajs])

        preprocessing_start_time = time.time()
        (padded_observations, padded_actions, padded_rewards, reward_mask,
         padded_infos) = self._preprocess_trajectories(trajs)
        preprocessing_time = ppo.get_time(preprocessing_start_time)

        logging.vlog(1, 'Preprocessing trajectories took %0.2f msec.',
                     ppo.get_time(preprocessing_start_time))
        logging.vlog(1, 'Padded Observations\' shape [%s]',
                     str(padded_observations.shape))
        logging.vlog(1, 'Padded Actions\' shape [%s]',
                     str(padded_actions.shape))
        logging.vlog(1, 'Padded Rewards\' shape [%s]',
                     str(padded_rewards.shape))

        # Some assertions.
        B, RT = padded_rewards.shape  # pylint: disable=invalid-name
        B, AT = padded_actions.shape  # pylint: disable=invalid-name
        assert (B, RT) == reward_mask.shape
        assert B == padded_observations.shape[0]

        log_prob_recompute_start_time = time.time()
        # TODO(pkozakowski): The following commented out code collects the network
        # predictions made while stepping the environment and uses them in PPO
        # training, so that we can use non-deterministic networks (e.g. with
        # dropout). This does not work well with serialization, so instead we
        # recompute all network predictions. Let's figure out a solution that will
        # work with both serialized sequences and non-deterministic networks.

        # assert ('log_prob_actions' in padded_infos and
        #         'value_predictions' in padded_infos)
        # These are the actual log-probabs and value predictions seen while picking
        # the actions.
        # actual_log_probabs_traj = padded_infos['log_prob_actions']
        # actual_value_predictions_traj = padded_infos['value_predictions']

        # assert (B, T, C) == actual_log_probabs_traj.shape[:3]
        # A = actual_log_probabs_traj.shape[3]  # pylint: disable=invalid-name
        # assert (B, T, 1) == actual_value_predictions_traj.shape

        del padded_infos

        # TODO(afrozm): log-probabs doesn't need to be (B, T+1, C, A) it can do with
        # (B, T, C, A), so make that change throughout.

        # NOTE: We don't have the log-probabs and value-predictions for the last
        # observation, so we re-calculate for everything, but use the original ones
        # for all but the last time-step.
        self._rng, key = jax_random.split(self._rng)

        (log_probabs_traj,
         value_predictions_traj) = (self._policy_and_value_net_apply(
             padded_observations,
             weights=self._policy_and_value_net_weights,
             state=self._model_state,
             rng=key,
         ))

        assert (B, AT) == log_probabs_traj.shape[:2]
        assert (B, AT) == value_predictions_traj.shape

        # TODO(pkozakowski): Commented out for the same reason as before.

        # Concatenate the last time-step's log-probabs and value predictions to the
        # actual log-probabs and value predictions and use those going forward.
        # log_probabs_traj = np.concatenate(
        #     (actual_log_probabs_traj, log_probabs_traj[:, -1:, :]), axis=1)
        # value_predictions_traj = np.concatenate(
        #     (actual_value_predictions_traj, value_predictions_traj[:, -1:, :]),
        #     axis=1)

        log_prob_recompute_time = ppo.get_time(log_prob_recompute_start_time)

        # Compute value and ppo losses.
        self._rng, key1 = jax_random.split(self._rng, num=2)
        logging.vlog(2, 'Starting to compute P&V loss.')
        loss_compute_start_time = time.time()
        (cur_combined_loss, component_losses, summaries,
         self._model_state) = (ppo.combined_loss(
             self._policy_and_value_net_weights,
             log_probabs_traj,
             value_predictions_traj,
             self._policy_and_value_net_apply,
             padded_observations,
             padded_actions,
             self._rewards_to_actions,
             padded_rewards,
             reward_mask,
             nontrainable_params=self._nontrainable_params,
             state=self._model_state,
             rng=key1))
        loss_compute_time = ppo.get_time(loss_compute_start_time)
        (cur_ppo_loss, cur_value_loss, cur_entropy_bonus) = component_losses
        logging.vlog(
            1,
            'Calculating P&V loss [%10.2f(%10.2f, %10.2f, %10.2f)] took %0.2f msec.',
            cur_combined_loss, cur_ppo_loss, cur_value_loss, cur_entropy_bonus,
            ppo.get_time(loss_compute_start_time))

        self._rng, key1 = jax_random.split(self._rng, num=2)
        logging.vlog(1, 'Policy and Value Optimization')
        optimization_start_time = time.time()
        keys = jax_random.split(key1, num=self._n_optimizer_steps)
        opt_step = 0
        opt_batch_size = min(self._optimizer_batch_size, B)
        index_batches = ppo.shuffled_index_batches(dataset_size=B,
                                                   batch_size=opt_batch_size)
        for (index_batch, key) in zip(index_batches, keys):
            k1, k2, k3 = jax_random.split(key, num=3)
            t = time.time()
            # Update the optimizer state on the sampled minibatch.
            self._policy_and_value_opt_state, self._model_state = (
                ppo.policy_and_value_opt_step(
                    # We pass the optimizer slots between PPO epochs, so we need to
                    # pass the optimization step as well, so for example the
                    # bias-correction in Adam is calculated properly. Alternatively we
                    # could reset the slots and the step in every PPO epoch, but then
                    # the moment estimates in adaptive optimizers would never have
                    # enough time to warm up. So it makes sense to reuse the slots,
                    # even though we're optimizing a different loss in every new
                    # epoch.
                    self._total_opt_step,
                    self._policy_and_value_opt_state,
                    self._policy_and_value_opt_update,
                    self._policy_and_value_get_params,
                    self._policy_and_value_net_apply,
                    log_probabs_traj[index_batch],
                    value_predictions_traj[index_batch],
                    padded_observations[index_batch],
                    padded_actions[index_batch],
                    self._rewards_to_actions,
                    padded_rewards[index_batch],
                    reward_mask[index_batch],
                    nontrainable_params=self._nontrainable_params,
                    state=self._model_state,
                    rng=k1))
            opt_step += 1
            self._total_opt_step += 1

            # Compute the approx KL for early stopping. Use the whole dataset - as we
            # only do inference, it should fit in the memory.
            (log_probab_actions_new, _) = (self._policy_and_value_net_apply(
                padded_observations,
                weights=self._policy_and_value_net_weights,
                state=self._model_state,
                rng=k2))

            action_mask = np.dot(np.pad(reward_mask, ((0, 0), (0, 1))),
                                 self._rewards_to_actions)
            approx_kl = ppo.approximate_kl(log_probab_actions_new,
                                           log_probabs_traj, action_mask)

            early_stopping = approx_kl > 1.5 * self._target_kl
            if early_stopping:
                logging.vlog(
                    1,
                    'Early stopping policy and value optimization after %d steps, '
                    'with approx_kl: %0.2f', opt_step, approx_kl)
                # We don't return right-away, we want the below to execute on the last
                # iteration.

            t2 = time.time()
            if (opt_step % self._print_every_optimizer_steps == 0
                    or opt_step == self._n_optimizer_steps or early_stopping):
                # Compute and log the loss.
                (combined_loss, component_losses, _,
                 self._model_state) = (ppo.combined_loss(
                     self._policy_and_value_net_weights,
                     log_probabs_traj,
                     value_predictions_traj,
                     self._policy_and_value_net_apply,
                     padded_observations,
                     padded_actions,
                     self._rewards_to_actions,
                     padded_rewards,
                     reward_mask,
                     nontrainable_params=self._nontrainable_params,
                     state=self._model_state,
                     rng=k3))
                logging.vlog(
                    1, 'One Policy and Value grad desc took: %0.2f msec',
                    ppo.get_time(t, t2))
                (ppo_loss, value_loss, entropy_bonus) = component_losses
                logging.vlog(
                    1, 'Combined Loss(value, ppo, entropy_bonus) [%10.2f] ->'
                    ' [%10.2f(%10.2f,%10.2f,%10.2f)]', cur_combined_loss,
                    combined_loss, ppo_loss, value_loss, entropy_bonus)

            if early_stopping:
                break

        optimization_time = ppo.get_time(optimization_start_time)

        logging.vlog(
            1, 'Total Combined Loss reduction [%0.2f]%%',
            (100 *
             (cur_combined_loss - combined_loss) / np.abs(cur_combined_loss)))

        summaries.update({
            'n_optimizer_steps': opt_step,
            'approx_kl': approx_kl,
        })
        for (name, value) in summaries.items():
            self._log('train', 'train/{}'.format(name), value)

        logging.info(
            'PPO epoch [% 6d], Reward[min, max, avg] [%5.2f,%5.2f,%5.2f], Combined'
            ' Loss(ppo, value, entropy) [%2.5f(%2.5f,%2.5f,%2.5f)]',
            self._epoch, min_reward, max_reward, avg_reward, combined_loss,
            ppo_loss, value_loss, entropy_bonus)

        # Bump the epoch counter before saving a checkpoint, so that a call to
        # save() after the training loop is a no-op if a checkpoint was saved last
        # epoch - otherwise it would bump the epoch counter on the checkpoint.
        last_epoch = self._epoch
        self._epoch += 1

        # Save parameters every time we see the end of at least a fraction of batch
        # number of trajectories that are done (not completed -- completed includes
        # truncated and done).
        # Also don't save too frequently, enforce a minimum gap.
        policy_save_start_time = time.time()
        # TODO(afrozm): Refactor to trax.save_trainer_state.
        if (self._n_trajectories_done >=
                self._done_frac_for_policy_save * self.train_env.batch_size
                and self._epoch % self._save_every_n == 0) or self._async_mode:
            self.save()
        policy_save_time = ppo.get_time(policy_save_start_time)

        epoch_time = ppo.get_time(epoch_start_time)

        timing_dict = {
            'epoch': epoch_time,
            'policy_eval': policy_eval_time,
            'trajectory_collection': trajectory_collection_time,
            'preprocessing': preprocessing_time,
            'log_prob_recompute': log_prob_recompute_time,
            'loss_compute': loss_compute_time,
            'optimization': optimization_time,
            'policy_save': policy_save_time,
        }

        timing_dict.update(timing_info)

        if self._should_write_summaries:
            for k, v in timing_dict.items():
                self._timing_sw.scalar('timing/%s' % k, v, step=last_epoch)

        max_key_len = max(len(k) for k in timing_dict)
        timing_info_list = [
            '%s : % 10.2f' % (k.rjust(max_key_len + 1), v)
            for k, v in sorted(timing_dict.items())
        ]
        logging.info('PPO epoch [% 6d], Timings: \n%s', last_epoch,
                     '\n'.join(timing_info_list))

        # Flush summary writers once in a while.
        if self._epoch % 1000 == 0:
            self.flush_summaries()
Esempio n. 2
0
  def train_epoch(self, evaluate=True):
    def write_metric(key, value):
      self._train_sw.scalar(key, value, step=self.epoch)
      self._history.append('train', key, self.epoch, value)

    # Get fresh trajectories every time.
    self._should_reset_train_env = True

    trajectory_collection_start_time = time.time()
    logging.vlog(1, 'AWR epoch [% 6d]: collecting trajectories.', self._epoch)
    trajs, _, timing_info, self._model_state = self.collect_trajectories(
        train=True, temperature=1.0, raw_trajectory=True)
    del timing_info
    trajectory_collection_time = ppo.get_time(trajectory_collection_start_time)

    # Convert these into numpy now.
    def extract_obs_act_rew_dones(traj_np):
      return traj_np[0], traj_np[1], traj_np[2], traj_np[4]

    trajs_np = [extract_obs_act_rew_dones(traj.as_numpy) for traj in trajs]

    # number of new actions.
    new_sample_count = sum(traj[1].shape[0] for traj in trajs_np)

    if self._should_write_summaries:
      write_metric('trajs/batch', len(trajs))
      write_metric('trajs/new_sample_count', new_sample_count)

    # The number of trajectories, i.e. `B`can keep changing from iteration to
    # iteration, since we are capped on the number of observations requested.
    # So let's operate on each trajectory on this own?

    # TODO(afrozm): So should our batches look like (B, T+1, *OBS) or B
    # different examples of (T+1, *OBS) each. Since B can keep changing?

    # Add these to the replay buffer.
    for traj in trajs:
      _ = self._replay_buffer.store(traj)

    if self._should_write_summaries:
      rewards = np.array([np.sum(traj[2]) for traj in trajs_np])
      avg_reward = np.mean(rewards)
      std_reward = np.std(rewards)
      max_reward = np.max(rewards)
      min_reward = np.min(rewards)

      write_metric('reward/avg', avg_reward)
      write_metric('reward/std', std_reward)
      write_metric('reward/max', max_reward)
      write_metric('reward/min', min_reward)

    # Wrap these observations/rewards inside ReplayBuffer.
    idx, valid_mask, valid_idx = self._replay_buffer.get_valid_indices()

    # pylint: disable=g-complex-comprehension
    observations = [
        self._replay_buffer.get(replay_buffer.ReplayBuffer.OBSERVATIONS_KEY,
                                idx[start_idx:end_plus_1_idx])
        for (start_idx,
             end_plus_1_idx) in self._replay_buffer.iterate_over_paths(idx)
    ]

    rewards = [
        self._replay_buffer.get(replay_buffer.ReplayBuffer.REWARDS_KEY,
                                idx[start_idx:end_plus_1_idx][:-1])
        for (start_idx,
             end_plus_1_idx) in self._replay_buffer.iterate_over_paths(idx)
    ]
    # pylint: enable=g-complex-comprehension

    t_final = awr_utils.padding_length(rewards, boundary=self._boundary)

    if self._should_write_summaries:
      write_metric('trajs/t_final', t_final)

    # These padded observations are over *all* the non-final observations in
    # the entire replay buffer.
    # Shapes:
    # padded_observations      = (B, T + 1, *OBS)
    # padded_observations_mask = (B, T + 1)
    padded_observations, padded_observations_mask = (
        awr_utils.pad_array_to_length(observations, t_final + 1)
    )

    batch = len(observations)
    if ((batch, t_final + 1) != padded_observations.shape[:2] or
        (batch, t_final + 1) != padded_observations_mask.shape):
      raise ValueError(
          f'Shapes mismatch, batch {batch}, t_final {t_final}'
          f'padded_observations.shape {padded_observations.shape}'
          f'padded_observations_mask.shape {padded_observations_mask.shape}')

    # Shapes:
    # padded_rewards      = (B, T)
    # padded_rewards_mask = (B, T)
    padded_rewards, padded_rewards_mask = awr_utils.pad_array_to_length(
        rewards, t_final)
    if ((padded_rewards.shape != (batch, t_final)) or
        (padded_rewards_mask.shape != (batch, t_final))):
      raise ValueError(
          f'Shapes mismatch, batch {batch}, t_final {t_final}'
          f'padded_rewards.shape {padded_rewards.shape}')

    # Shapes:
    # log_probabs_traj       = (B, T + 1, #actions)
    # value_predictions_traj = (B, T + 1)
    (log_probabs_traj, value_predictions_traj) = (
        self._policy_and_value_net_apply(
            padded_observations,
            weights=self._policy_and_value_net_weights,
            state=self._model_state,
            rng=self._get_rng(),
        ))

    if ((batch, t_final + 1) != log_probabs_traj.shape[:2] or
        (batch, t_final + 1) != value_predictions_traj.shape):
      raise ValueError(
          f'Shapes mismatch, batch {batch}, t_final {t_final}'
          f'log_probabs_traj.shape {log_probabs_traj.shape}'
          f'value_predictions_traj.shape {value_predictions_traj.shape}')

    # Zero out the padding's value predictions, since the net may give some
    # prediction to the padding observations.
    value_predictions_traj *= padded_observations_mask

    # Compute td-lambda returns, and reshape to match value_predictions_traj.
    list_td_lambda_returns = awr_utils.batched_compute_td_lambda_return(
        padded_rewards, padded_rewards_mask, value_predictions_traj,
        padded_observations_mask, self._gamma, self._td_lambda)
    # pad an extra 0 for each to match lengths of value predictions.
    list_target_values = [
        onp.pad(l, (0, 1), 'constant') for l in list_td_lambda_returns
    ]

    if batch != len(list_target_values):
      raise ValueError(f'batch != len(list_target_values) : '
                       f'{batch} vs {len(list_target_values)}')

    # Shape: (len(idx),)
    target_values = onp.concatenate(list_target_values)
    if target_values.shape != (len(idx),):
      raise ValueError(f'target_values.shape != (len(idx),) = '
                       f'{target_values.shape} != ({len(idx)},)')

    # Shape: (len(idx),)
    target_values = onp.concatenate(list_target_values)

    vals = self.flatten_vals(value_predictions_traj, padded_observations_mask)

    if vals.shape != target_values.shape:
      raise ValueError(f'vals.shape != target_values.shape : '
                       f'{vals.shape} vs {target_values.shape}')

    # Calculate advantages.
    adv, norm_adv, adv_mean, adv_std = self._calc_adv(
        target_values, vals, valid_mask)

    adv_weights, adv_weights_mean, adv_weights_min, adv_weights_max = (
        self._calc_adv_weights(norm_adv, valid_mask)
    )

    del adv, adv_mean, adv_std
    del adv_weights_min, adv_weights_max, adv_weights_mean

    combined_steps = int(
        np.ceil(self._optimization_steps * new_sample_count /
                self._num_samples_to_collect))
    combined_losses = self._update_combined(combined_steps, valid_idx,
                                            target_values, adv_weights)

    if self._should_write_summaries:
      write_metric('combined/optimization_steps', combined_steps)

      timing_dict = {
          'trajectory_collection': trajectory_collection_time,
          # 'epoch': epoch_time,
          # 'policy_eval': policy_eval_time,
          # 'preprocessing': preprocessing_time,
          # 'log_prob_recompute': log_prob_recompute_time,
          # 'loss_compute': loss_compute_time,
          # 'optimization': optimization_time,
          # 'policy_save': policy_save_time,
      }

      if self._should_write_summaries:
        for k, v in timing_dict.items():
          write_metric('timing/{}'.format(k), v)

      # Only dump the average post losses.
      if combined_losses:
        for k, v in combined_losses.items():
          if 'post_entropy' in k:
            write_metric(k.replace('post_entropy', 'entropy'), v)
          if 'post_loss' in k:
            write_metric(k.replace('post_loss', 'loss'), v)

    self._epoch += 1

    self.flush_summaries()