Esempio n. 1
0
def bm_height_optim(tree, traits, nrates=False):
    if nrates != False:

        start = [random.uniform(0.000001, 2.0)] * nrates
        tree_utils.assign_node_nums(tree)
        tree_utils.init_heights(tree, start)
        tree_utils.assign_sigsq(tree, start)
        nstart = [
            i.height for i in tree.iternodes()
            if i.istip == False and i.parent != None
        ]
        start = start + nstart
        opt = optimize.fmin_bfgs(calc_like_sigsq_nodes,
                                 start,
                                 args=(tree, traits, nrates),
                                 full_output=True,
                                 disp=True)
        #bounds = [(0.0,100000.0)]*len(start)
        #opt = optimize.fmin_l_bfgs_b(calc_like_sigsq_nodes,start,approx_grad = True,bounds =bounds,args=(tree,traits,nrates))
        tree_utils.assign_node_heights(opt[0][1:], tree)
        return [tree.get_newick_repr(True), opt]
    elif nrates == False:  ##estimate node heights with fixed rate
        tree_utils.assign_node_nums(tree)
        tree_utils.init_heights(tree)
        sigsq_i = calc_bm_likelihood.sigsqML(tree)
        tree_utils.assign_sigsq(tree, [sigsq_i])
        start = [i.height for i in tree.iternodes()
                 if i.istip == False]  # and i.parent!=None]
        #print len(start)
        opt = optimize.fmin_bfgs(calc_like_nodes,
                                 start,
                                 args=(tree, traits),
                                 full_output=True,
                                 disp=True)
        return [tree.get_newick_repr(True), opt]
Esempio n. 2
0
def bm_brlen_optim(tree, traits, rate=1):
    tree_utils.assign_branch_nums(tree)
    tree_utils.assign_sigsq(tree, [rate])
    start = [i.length for i in tree.iternodes() if i != tree]
    opt = optimize.fmin_bfgs(calc_like_brlens,
                             start,
                             args=(tree, traits),
                             full_output=False,
                             disp=True)
    return [tree.get_newick_repr(True), opt]
Esempio n. 3
0
def calc_like_sigsq_nodes(ht, tree, traits, nrates):
    for i in ht:
        if i < 0:
            return LARGE
    z = 0
    while z < nrates:
        if ht[z] > 500:
            return LARGE
        z += 1
    if nrates == 1:
        tree_utils.assign_sigsq(tree, ht[0])
    elif nrates > 1:
        tree_utils.assign_sigsq(tree, ht[0:nrates])
    bad = assign_node_heights(ht[nrates:], tree)
    if bad:
        return LARGE
    try:
        val = -bm_like.bm_prune(tree, traits)
    except:
        return LARGE
    #print ht[0]
    #print (val,ht)
    return val
Esempio n. 4
0
def calc_like_strat_bm(p,
                       tree,
                       strat,
                       traits,
                       nrates=1):  #p[0] should be lambda, p[1:nrates] = sig2
    for i in p:
        if i < 0:
            return LARGE
    hstart = nrates + 1
    if nrates == 1:
        tree_utils.assign_sigsq(tree, [p[1]])
    elif nrates > 1:
        tree_utils.assign_sigsq(tree, p[1:nrates])
    bad = tree_utils.assign_node_heights(p[hstart:], tree)
    if bad:
        return LARGE
    try:
        sll = -stratoML.hr97_loglike(tree, p[0])
        bmll = -calc_bm_likelihood.bm_prune(tree, traits)
        ll = sll + bmll
    except:
        return LARGE
    return ll