Esempio n. 1
0
    def test_load_save(self):
        cov_main = GPCov(wfn_params=[1.0,], dfn_params=[ 2.5,], wfn_str="compact0", dfn_str="euclidean")
        cov_fic = GPCov(wfn_params=[1.0,], dfn_params=[ 1.5,], wfn_str="se", dfn_str="euclidean", Xu = self.u)
        noise_var = 1.0

        gp1 = GP(X=self.X,
                 y=self.y1,
                 noise_var = noise_var,
                 cov_main = cov_main,
                 cov_fic = cov_fic,
                 compute_ll=True,
                 sparse_threshold=0,
                 build_tree=False)


        gp1.save_trained_model("test_csfic.npz")
        gp2 = GP(fname="test_csfic.npz", build_tree=False)

        pts = np.reshape(np.linspace(-5, 5, 20), (-1, 1))
        p1 = gp1.predict(pts)
        v1 = gp1.variance(pts)
        p2 = gp2.predict(pts)
        v2 = gp2.variance(pts)

        self.assertTrue((p1 == p2).all())
        self.assertTrue((v1 == v2).all())
Esempio n. 2
0
def trained_gp(dataset_name, model_name, n=None, tag=None, **kwargs):

    fname = gp_fname(dataset_name, model_name, n=n, tag=tag)
    if os.path.exists(fname):
        return GP(fname=fname, **kwargs)

    X_train, y_train = training_data(dataset_name, n=n)
    cov_main, cov_fic, noise_var = load_hparams(dataset_name, model_name, tag=tag)


    if model_name=="se":
        kwargs['sparse_invert'] = False
        kwargs['build_tree'] = False

    "print training GP for", dataset_name, model_name
    sgp = GP(X=X_train, y=y_train,
             noise_var=noise_var,
             cov_main=cov_main,
             cov_fic=cov_fic,
             sparse_threshold=1e-8,
             **kwargs)
    sgp.save_trained_model(fname)
    print "saved trained GP to", fname

    stats_fname = fname[:-3] + "_stats.txt"
    with open(stats_fname, 'w') as f:
        f.write("main hyperparams: %s\n" % cov_main)
        f.write("fic hyperparams: %s\n" % cov_fic)

        if scipy.sparse.issparse(sgp.K):
            nzr, nzc = sgp.K.nonzero()
            f.write("K nonzero: %d/%d = %.3f%%\n" % (len(nzr), sgp.K.shape[0]**2, float(len(nzr))/sgp.K.shape[0]**2))
        if scipy.sparse.issparse(sgp.Kinv):
            nzr, nzc = sgp.Kinv.nonzero()
            f.write("Kinv nonzero: %d/%d = %.3f%%\n" % (len(nzr), sgp.Kinv.shape[0]**2, float(len(nzr))/sgp.Kinv.shape[0]**2))

        for k in sgp.timings:
            f.write("timing %s: %.3f\n" % (k, sgp.timings[k]))
    print "saved stats to", stats_fname

    return sgp