def get_grid_metrics(self): """Return the metrics that should be displayed in the tracking table. """ return [ tt.group("train", [ tt.leaf("epoch"), tt.leaf("reco", ".3f"), ], align=">"), tt.group("valid", [ tt.leaf("penalty", ".1f"), tt.leaf("ms", ".1f"), tt.leaf("reco", ".2%"), tt.leaf("breco", ".2%"), tt.leaf("b_nsdr", ".2f"), tt.leaf("b_nsdr_drums", ".2f"), tt.leaf("b_nsdr_bass", ".2f"), tt.leaf("b_nsdr_other", ".2f"), tt.leaf("b_nsdr_vocals", ".2f"), ], align=">"), tt.group("test", [tt.leaf(name, ".2f") for name in self.test_metrics], align=">") ]
def check(self, trim=None, reset=False): to_check = [] statuses = {} for job in self.jobs: if get_done(job.name): statuses[job.sid] = "done" elif job.sid is not None: to_check.append(job.sid) statuses.update(_check(to_check)) if trim is not None: trim = len(get_metrics(self.jobs[trim].name)) lines = [] for index, job in enumerate(self.jobs): status = statuses.get(job.sid, "failed") if status in ["failed", "completing"] and reset: reset_job(job.name) status = "reset" meta = { 'name': job.name, 'sid': job.sid, 'status': status[:2], "index": index } metrics = get_metrics(job.name) if trim is not None: metrics = metrics[:trim] meta["epoch"] = len(metrics) if metrics: metrics = metrics[-1] else: metrics = {} lines.append({'meta': meta, 'metrics': metrics}) table = tt.table(shorten=True, groups=[ tt.group("meta", [ tt.leaf("index", align=">"), tt.leaf("name"), tt.leaf("sid", align=">"), tt.leaf("status"), tt.leaf("epoch", align=">") ]), tt.group("metrics", [ tt.leaf("train", ".2%"), tt.leaf("valid", ".2%"), tt.leaf("best", ".2%"), tt.leaf("true_model_size", ".2f"), tt.leaf("compressed_model_size", ".2f"), ]) ]) print(tt.treetable(lines, table, colors=["0", "38;5;245"]))
parts = [] else: parts = [ p.split("=") for p in name.split(" ") if "tasnet" not in p ] if not args.individual: parts = [(k, v) for k, v in parts if k != STD_KEY] name = model + " " + " ".join(f"{k}={v}" for k, v in parts) all_stats[name].append(metric) metrics = [ tt.leaf("score", ".4f"), tt.leaf("std", ".3f"), tt.leaf("count", ".2f") ] mytable = tt.table([tt.leaf("name"), tt.group("valid", metrics)]) lines = [] for name, stats in all_stats.items(): line = {"name": name} stats = np.array(stats) line["valid"] = { "score": stats.mean(), "std": stats.std() / stats.shape[0]**0.5, "count": stats.shape[0] } lines.append(line) lines.sort(key=lambda x: x["valid"]["score"]) print(tt.treetable(lines, mytable, colors=['33', '0']))
parts = [p.split("=") for p in name.split(" ") if "tasnet" not in p] if not args.individual: parts = [(k, v) for k, v in parts if k != STD_KEY] name = model + " " + " ".join(f"{k}={v}" for k, v in parts) stats = read(args.metric, results) if (not stats or len(stats["drums"]) != 50): print(f"Missing stats for {results}", file=sys.stderr) else: all_stats[name].append(stats) metrics = [tt.leaf("score", ".2f"), tt.leaf("std", ".2f")] sources = ["drums", "bass", "other", "vocals"] mytable = tt.table( [tt.leaf("name"), tt.group("all", metrics + [tt.leaf("count")])] + [tt.group(source, metrics) for idx, source in enumerate(sources)]) lines = [] for name, stats in all_stats.items(): line = {"name": name} if 'accompaniment' in stats: del stats['accompaniment'] alls = [] for source in sources: stat = [np.nanmedian(s[source]) for s in stats] alls.append(stat) line[source] = { "score": np.mean(stat), "std": np.std(stat) / len(stat)**0.5 }
parts = [] else: parts = [p.split("=") for p in name.split(" ") if p != '--tasnet'] if not args.individual: parts = [(k, v) for k, v in parts if k != STD_KEY] name = model + " " + " ".join(f"{k}={v}" for k, v in parts) stats = read(args.metric, results) if (not stats or len(stats["drums"]) != 50): print(f"Missing stats for {results}", file=sys.stderr) else: all_stats[name].append(stats) metrics = [tt.leaf("score", ".2f"), tt.leaf("std", ".2f")] sources = ["drums", "bass", "other", "vocals"] mytable = tt.table([tt.leaf("name"), tt.group("all", metrics + [tt.leaf("count")])] + [tt.group(source, metrics) for idx, source in enumerate(sources)]) lines = [] for name, stats in all_stats.items(): line = {"name": name} if 'accompaniment' in stats: del stats['accompaniment'] alls = [] for source in sources: stat = [np.nanmedian(s[source]) for s in stats] alls.append(stat) line[source] = {"score": np.mean(stat), "std": np.std(stat) / len(stat)**0.5} alls = np.array(alls) line["all"] = { "score": alls.mean(),