def test_generate_scores_workflow_sanity():
    # Simple
    raster_1 = Raster(numpy.reshape(numpy.arange(100), (10, 10)),
                      BBox((0, 0, 10, 10)), 1, 0)
    raster_2 = Raster(numpy.reshape(numpy.arange(100, 200), (10, 10)),
                      BBox((0, 0, 10, 10)), 1, 0)
    limits = [{'min': 30, 'max': 70}, {'min': 140, 'max': 160}]

    GenerateScores()(variables=[raster_1, raster_2],
                     limits=limits,
                     region='test')
Esempio n. 2
0
    def get_render_configurations(self, request, **kwargs):
        tile_bounds = list(
            mercantile.bounds(int(self.kwargs['x']), int(self.kwargs['y']),
                              int(self.kwargs['z'])))
        extent = BBox(
            tile_bounds,
            projection=Proj('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
        ).project(
            Proj(
                '+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +a=6378137 +b=6378137 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs'
            ))

        base_config = ImageConfiguration(
            extent=extent,
            size=TILE_SIZE,
            image_format='png',
            background_color=TRANSPARENT_BACKGROUND_COLOR)

        return base_config, [
            RenderConfiguration(variable=x,
                                extent=extent,
                                size=TILE_SIZE,
                                image_format='png')
            for x in self.service.variable_set.all()
        ]
Esempio n. 3
0
def test_bbox():
    bbox = BBox(TEST_COORDS, TEST_COORDS_PRJ)
    assert bbox.xmin == TEST_COORDS[0]
    assert bbox.ymin == TEST_COORDS[1]
    assert bbox.xmax == TEST_COORDS[2]
    assert bbox.ymax == TEST_COORDS[3]
    assert bbox.projection.srs == TEST_COORDS_PRJ.srs
Esempio n. 4
0
    def get_read_window(self, extent):
        """Calculates a read window and transform to read data within the extent.

        Example
        -------
        window, transform = instance.get_read_window(extent)
        data = instance.data[window]

        Parameters
        ----------
        extent : (xmin, ymin, xmax, ymax)

        Returns
        -------
        (y_slice, x_slice), SpatialCoordinateVariables
        """
        # Calculate indexes to slice based on extent
        bbox = BBox(extent)
        x_slice = slice(*self.coords.x.indices_for_range(bbox.xmin, bbox.xmax))
        y_slice = slice(*self.coords.y.indices_for_range(bbox.ymin, bbox.ymax))

        # expand by 1px in all directions to make sure something isn't getting cut off
        # if bounds fall very close to pixel edges
        x_slice = slice(max(x_slice.start - 1, 0),
                        min(x_slice.stop + 1, len(self.coords.x)),
                        x_slice.step)
        y_slice = slice(max(y_slice.start - 1, 0),
                        min(y_slice.stop + 1, len(self.coords.y)),
                        y_slice.step)

        # get updated coords for the slices
        coords = self.coords.slice_by_window(Window(y_slice, x_slice))

        return (y_slice, x_slice), coords
Esempio n. 5
0
    def __getitem__(self, items):
        arr = super(Raster, self).__getitem__(items)
        if not isinstance(arr, numpy.ndarray) or isinstance(
                arr, MaskedConstant):
            return arr

        Raster.__array_finalize__(arr, self)

        if self.extent is None or self.x_dim is None or self.y_dim is None:
            return arr.view(numpy.ndarray)  # Cast back to regular numpy array

        if isinstance(items, slice):
            items = (items, )

        if isinstance(items, tuple):
            xmin, ymin, xmax, ymax = self.extent.as_list()
            cell_size = (self.extent.width / self.shape[self.x_dim],
                         self.extent.height / self.shape[self.y_dim])
            has_valid_extent = True

            for i, item in enumerate(items):
                if not isinstance(item, slice) and i in {
                        self.x_dim, self.y_dim
                }:
                    # Not a slice, so we can't reliably preserve extent information
                    has_valid_extent = False
                    break

                if i == self.x_dim:
                    xmin += cell_size[0] * (item.start or 0)

                    end = min(item.stop or self.shape[self.x_dim],
                              self.shape[self.x_dim])
                    if end < 0:
                        end = self.shape[self.x_dim] + end + 1

                    xmax -= cell_size[0] * (self.shape[self.x_dim] - end)

                if i == self.y_dim:
                    start = item.start or 0
                    end = min(item.stop or self.shape[self.y_dim],
                              self.shape[self.y_dim])
                    if end < 0:
                        end = self.shape[self.y_dim] + end
                    end = self.shape[self.y_dim] - end

                    if not self.y_increasing:
                        start, end = end, start

                    ymin += cell_size[1] * start
                    ymax -= cell_size[1] * end

            if has_valid_extent:
                arr.extent = BBox((xmin, ymin, xmax, ymax),
                                  projection=self.extent.projection)
                return arr
            else:
                return arr.view(numpy.ndarray)

        return arr.view(numpy.ndarray)
Esempio n. 6
0
def test_bbox_local_projection():
    bbox = BBox(TEST_COORDS, TEST_COORDS_PRJ)
    out = CRS.from_string(bbox.get_local_albers_projection().srs)
    expected = CRS.from_string(
        "+lon_0=-124.5625 +ellps=WGS84 +datum=WGS84 +y_0=0 +no_defs=True +proj=aea +x_0=0 +units=m +lat_2=48.9375 +lat_1=48.6875 +lat_0=0 "
    )
    assert expected == out
Esempio n. 7
0
def test_projection():
    bbox = BBox(TEST_COORDS, TEST_COORDS_PRJ)
    proj_bbox = bbox.project(Proj(init="EPSG:3857"))
    # Calculated by running this previously under controlled conditions.  No validation against truth of projection values.
    assert numpy.allclose(proj_bbox.as_list(), [
        -13887106.476460878, 6211469.632719522, -13845361.6674134,
        6274861.394006577
    ])
Esempio n. 8
0
    def _normalize_bbox(self, bbox, size):
        """Returns this bbox normalized to match the ratio of the given size."""

        bbox_ratio = float(bbox.width) / float(bbox.height)
        size_ratio = float(size[0]) / float(size[1])

        if round(size_ratio, 4) == round(bbox_ratio, 4):
            return bbox
        else:
            if bbox.height * size_ratio >= bbox.width:
                diff = bbox.height * size_ratio - bbox.width
                return BBox((bbox.xmin - diff / 2, bbox.ymin,
                             bbox.xmax + diff / 2, bbox.ymax), bbox.projection)
            else:
                diff = abs(bbox.width / size_ratio - bbox.height)
                return BBox((bbox.xmin, bbox.ymin - diff / 2, bbox.xmax,
                             bbox.ymax + diff / 2), bbox.projection)
Esempio n. 9
0
    def bbox(self):

        half_x_pixel_size = self.x.pixel_size / 2.0
        half_y_pixel_size = self.y.pixel_size / 2.0

        return BBox(
            (self.x.min - half_x_pixel_size, self.y.min - half_y_pixel_size,
             self.x.max + half_x_pixel_size, self.y.max + half_y_pixel_size),
            self.projection)
Esempio n. 10
0
    def crop_image(self, im):
        im_ul = (self.center_point_px[0] - self.target_size[0] // 2,
                 self.center_point_px[1] - self.target_size[1] // 2)
        box = (*im_ul, im_ul[0] + self.target_size[0],
               im_ul[1] + self.target_size[1])

        return im.crop(box), BBox(
            (self.to_world(box[0], box[3])) + self.to_world(box[2], box[1]),
            projection=Proj(init='epsg:3857'))
def test_generate_scores_workflow_validity():
    """Test simple 2x2 grid against pre-calculated values"""

    ahm = Raster(numpy.array([[284, 274], [307, 298]]), BBox((0, 0, 10, 10)),
                 1, 0)
    cmd = Raster(numpy.array([[292, 305], [300, 291]]), BBox((0, 0, 10, 10)),
                 1, 0)
    limits = [{'min': 264, 'max': 304}, {'min': 271, 'max': 311}]
    expected_mask = numpy.array([[False, False], [True, False]])
    expected_results = numpy.ma.masked_array([[95, 14], [None, 30]],
                                             mask=expected_mask)

    results = GenerateScores()(variables=[ahm, cmd],
                               limits=limits,
                               region='test')

    assert (results['raster_out'].mask == expected_mask).all()
    assert (results['raster_out'] == expected_results).all()
Esempio n. 12
0
    def test_raster(self):
        arr = numpy.reshape(numpy.arange(100), (10, 10))
        extent = BBox((0, 0, 10, 10))
        raster = Raster(arr, extent, 1, 0)

        assert isinstance(raster, Raster)
        raster = raster[:]
        assert isinstance(raster, Raster)
        assert isinstance(raster.extent, BBox)

        clipped = raster[3:, 3:-1]
        assert isinstance(clipped, Raster)
        assert isinstance(raster.extent, BBox)
        assert clipped.extent.as_list() == [3, 0, 10, 7]

        raster.y_increasing = True
        clipped = raster[3:, 3:-1]
        assert isinstance(clipped, Raster)
        assert isinstance(raster.extent, BBox)
        assert clipped.extent.as_list() == [3, 3, 10, 10]

        clipped = raster[0]
        assert not isinstance(clipped, Raster)
        assert isinstance(raster.extent, BBox)
        assert is_ndarray(clipped)
        assert (clipped == numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])).all()

        # Make sure binops don't lose extent info
        assert isinstance((raster == raster).extent, BBox)
        assert isinstance((raster != raster).extent, BBox)
        assert isinstance((raster > 2).extent, BBox)
        assert isinstance((2 > raster).extent, BBox)
        assert isinstance((raster + 2).extent, BBox)
        assert isinstance((2 + raster).extent, BBox)
        assert isinstance((raster - 2).extent, BBox)
        assert isinstance((2 - raster).extent, BBox)
        assert isinstance((raster * 2).extent, BBox)
        assert isinstance((2 * raster).extent, BBox)
        assert isinstance((raster / 2).extent, BBox)
        assert isinstance((2 / raster).extent, BBox)
        assert isinstance((raster // 2).extent, BBox)
        assert isinstance((2 // raster).extent, BBox)
        assert isinstance((raster**2).extent, BBox)
        assert isinstance((2**raster).extent, BBox)
        assert isinstance((raster % 2).extent, BBox)
        assert isinstance((2 % raster).extent, BBox)
        assert isinstance((raster << 2).extent, BBox)
        assert isinstance((2 << raster).extent, BBox)
        assert isinstance((raster >> 2).extent, BBox)
        assert isinstance((2 >> raster).extent, BBox)
        assert isinstance((raster | 2).extent, BBox)
        assert isinstance((2 | raster).extent, BBox)
        assert isinstance((raster & 2).extent, BBox)
        assert isinstance((2 & raster).extent, BBox)
        assert isinstance((raster ^ 2).extent, BBox)
        assert isinstance((2 ^ raster).extent, BBox)
Esempio n. 13
0
    def get_results_image(self, bounds, size, single_color, kept_colors, gained_colors, species, historic, futures):
        kept_colors = self.get_colors(kept_colors, len(futures)+1)
        gained_colors = self.get_colors(gained_colors, len(futures)+1)

        extent = BBox(bounds, projection=WGS84)
        self.service = Service.objects.get(name='{}_p{}_800m_pa'.format(species, historic))
        variable = self.service.variable_set.all().first()
        native_extent = extent.project(Proj(str(variable.projection)))

        coords = SpatialCoordinateVariables.from_bbox(variable.full_extent, *self.get_grid_spatial_dimensions(variable))
        x_slice = coords.x.indices_for_range(native_extent.xmin, native_extent.xmax)
        y_slice = coords.y.indices_for_range(native_extent.ymin, native_extent.ymax)

        historic_data = self.get_grid_for_variable(variable, x_slice=x_slice, y_slice=y_slice)
        self.close_dataset()

        if not futures:
            data = historic_data
            renderer = UniqueValuesRenderer([(1, Color.from_hex(single_color))], fill_value=0)
        else:
            future_grids = []
            for future in futures:
                self.service = Service.objects.get(name='{}_15gcm_{}_pa'.format(species, future))
                variable = self.service.variable_set.all().first()
                future_grids.append(self.get_grid_for_variable(variable, x_slice=x_slice, y_slice=y_slice))
                self.close_dataset()
            future_data = sum(future_grids)
            del future_grids

            data = numpy.zeros_like(historic_data, numpy.uint8)

            data[historic_data == 1] = 1
            kept_idx = (historic_data == 1) & (future_data > 0)
            data[kept_idx] = future_data[kept_idx] + 1
            gained_idx = (historic_data == 0) & (future_data > 0)
            data[gained_idx] = future_data[gained_idx] + len(kept_colors) + 1

            data[data.mask == 1] = 0

            values = numpy.unique(data)
            renderer = UniqueValuesRenderer(
                [
                    (i+1, Color.from_hex(c))
                    for (i, c) in enumerate(kept_colors)
                    if i+1 in values
                ] +
                [
                    (i+len(kept_colors)+1, Color.from_hex(c))
                    for (i, c) in enumerate(gained_colors)
                    if i+len(kept_colors)+1 in values
                ],
                fill_value=0
            )

        image = renderer.render_image(data.data).convert('RGBA')
        return GeoImage(image, native_extent).warp(extent, size).image
Esempio n. 14
0
def test_SpatialCoordinateVariables_slice_by_bbox():
    lat = SpatialCoordinateVariable(numpy.arange(19, -1, -1))
    lon = SpatialCoordinateVariable(numpy.arange(10))
    proj = Proj(init='EPSG:4326')
    coords = SpatialCoordinateVariables(lon, lat, proj)

    subset = coords.slice_by_bbox(BBox((1.75, 3.7, 6.2, 16.7), proj))
    assert numpy.array_equal(subset.x.values, numpy.arange(2, 6))
    assert subset.x.values[0] == 2
    assert subset.x.values[-1] == 5
    assert subset.y.values[0] == 16
    assert subset.y.values[-1] == 4
Esempio n. 15
0
    def to_python(self, value):
        if not value or isinstance(value, BBox):
            return value

        try:
            data = json.loads(value)
            projection = pyproj.Proj(str(data.get('proj4'))) if data.get('proj4') else None

            return BBox(
                (data['xmin'], data['ymin'], data['xmax'], data['ymax']), projection=projection
            )
        except (ValueError, KeyError):
            raise ValidationError("")
Esempio n. 16
0
    def to_python(self, value):
        if not value or isinstance(value, BBox):
            return value

        try:
            projection = None
            if 'xmin' in value:
                data = json.loads(value)
                values = [data[k] for k in ('xmin', 'ymin', 'xmax', 'ymax')]
                if 'spatialReference' in data:
                    projection = SrField().to_python(
                        json.dumps(data.get('spatialReference')))
            else:
                values = [float(x.strip()) for x in value.split(',')]

            return BBox(values, projection=projection)
        except ValueError:
            raise ValidationError('Invalid bbox')
Esempio n. 17
0
    def get_basemap_image(self, basemap, bounds, size, zoom):
        tiles = list(mercantile.tiles(*bounds, zoom, truncate=True))
        bounds_merc = [*mercantile.xy(*bounds[:2]), *mercantile.xy(*bounds[2:])]
        image = Image.new('RGBA', size)
        to_image = world_to_image(BBox(bounds_merc, projection=WEB_MERCATOR), size)

        async def fetch_tile(client, url, tile):
            tile_bounds = mercantile.xy_bounds(tile)

            if url.startswith('//'):
                url = 'http:' + url

            async with client.get(url.format(x=tile.x, y=tile.y, z=tile.z, s='server')) as r:
                tile_im = Image.open(BytesIO(await r.read()))
                image.paste(tile_im, [int(round(x)) for x in to_image(*tile_bounds[0:4:3])])  # [0:4:3] = [xmin, ymax] (upper-left)

        async def fetch_tiles():
            async with aiohttp.ClientSession() as client:
                futures = [ensure_future(fetch_tile(client, basemap, tile)) for tile in tiles]
                await asyncio.wait(futures, return_when=asyncio.ALL_COMPLETED)

        asyncio.get_event_loop().run_until_complete(fetch_tiles())
        return image
Esempio n. 18
0
def raster_to_netcdf(filename_or_raster,
                     outfilename=None,
                     variable_name='data',
                     format='NETCDF4',
                     **kwargs):
    """
    Parameters
    ----------
    filename_or_raster: name of file to open with rasterio, or opened rasterio raster dataset
    outfilename: name of output file.  If blank, will be same name as input with *.nc extension added
    variable_name: output format for netCDF file: NETCDF3_CLASSIC, NETCDF3_64BIT, NETCDF4_CLASSIC, NETCDF4
    format
    kwargs: arguments passed to variable creation: zlib

    Note: only rasters with descending y coordinates are currently supported
    """

    start = time.time()

    if isinstance(filename_or_raster, string_types):
        if not os.path.exists(filename_or_raster):
            raise ValueError(
                'File does not exist: {0}'.format(filename_or_raster))

        src = rasterio.open(filename_or_raster)
        managed_raster = True
    else:
        src = filename_or_raster
        managed_raster = False

    if not src.count == 1:
        raise NotImplementedError(
            'ERROR: multi-band rasters not yet supported for this operation')

    prj = pyproj.Proj(**src.crs)

    outfilename = outfilename or src.name + '.nc'
    with Dataset(outfilename, 'w', format=format) as target:
        if is_latlong(prj):
            x_varname = 'longitude'
            y_varname = 'latitude'
        else:
            x_varname = 'x'
            y_varname = 'y'

        # TODO: may need to do this in blocks if source is big
        data = src.read(1, masked=True)

        coords = SpatialCoordinateVariables.from_bbox(BBox(src.bounds, prj),
                                                      src.width, src.height)
        coords.add_to_dataset(target, x_varname, y_varname, **kwargs)

        out_var = target.createVariable(variable_name,
                                        data.dtype,
                                        dimensions=(y_varname, x_varname),
                                        **kwargs)
        out_var[:] = data
        set_crs(target, variable_name, prj, set_proj4_att=False)

    if managed_raster:
        src.close()

    print('Elapsed {0:.3f} seconds'.format(time.time() - start))
Esempio n. 19
0
    def handle(self, data_files, overwrite, *args, **options):
        with transaction.atomic():
            for data_file in data_files:
                if not os.path.isdir(SERVICE_DATA_ROOT):
                    raise CommandError('Directory %s does not exist.' % SERVICE_DATA_ROOT)

                # Check for existence of file or service. There's a possible race
                # condition here, but this is a management command, not a user command.
                file_exists = False
                svc_exists = False

                target = os.path.join(SERVICE_DATA_ROOT, os.path.basename(data_file))
                if os.path.exists(target):
                    if not overwrite:
                        self.stderr.write('File %s already exists.\n' % target)
                    file_exists = True

                svc_name = os.path.basename(data_file).split('.')[0]
                if Service.objects.filter(name=svc_name).exists():
                    if overwrite:
                        Service.objects.filter(name=svc_name).delete()
                    else:
                        self.stderr.write('Service %s already exists.\n' % svc_name)
                        svc_exists = True

                if (file_exists or svc_exists) and not overwrite:
                    raise CommandError('No changes made.')

                desc = describe(data_file)
                grid = next(v['spatial_grid'] for k, v in desc['variables'].items() if v.get('spatial_grid'))
                extent = grid['extent']
                proj = extent['proj4']
                bbox = BBox(
                    [extent[c] for c in ['xmin', 'ymin', 'xmax', 'ymax']], pyproj.Proj(proj)
                )
                renderer = UniqueValuesRenderer([(1, Color(0, 0, 0, 255))], fill_value=0)

                if file_exists:
                    os.remove(os.path.join(SERVICE_DATA_ROOT, os.path.basename(data_file)))
                shutil.copy(data_file, SERVICE_DATA_ROOT)

                service = Service.objects.create(
                    name=svc_name,
                    projection=proj,
                    full_extent=bbox,
                    initial_extent=bbox,
                    data_path=os.path.basename(data_file)
                )

                for i, (variable_name, variable) in enumerate(desc['variables'].items()):
                    grid = variable.get('spatial_grid')
                    if grid is None:
                        continue

                    extent = grid['extent']
                    bbox = BBox(
                        [extent[c] for c in ['xmin', 'ymin', 'xmax', 'ymax']], pyproj.Proj(extent['proj4'])
                    )

                    Variable.objects.create(
                        service=service,
                        index=i,
                        variable=variable_name,
                        projection=proj,
                        x_dimension=grid['x_dimension'],
                        y_dimension=grid['y_dimension'],
                        name=variable_name,
                        renderer=renderer,
                        full_extent=bbox
                    )
Esempio n. 20
0
def main(in_pattern, out_pattern, boundary, single, varname):
    """
    Clips and masks large NetCDF datasets to regional datasets based on the boundary. The in_pattern and out_pattern
    arguments should be filename patterns (can include path) with the pattern: /path/to/in_netcdf_{variable}.nc.

    Example usage: python cut_to_region.py NorthAmerica/NA_{variable}.nc USWest/west_{variable}.nc west.shp
    """

    if single and not varname:
        print('--varname is required when --single is used')
        sys.exit(-1)

    if single:
        if not os.path.exists(in_pattern):
            print('Input file {} does not exist.'.format(in_pattern))
            sys.exit(-1)

        input_paths = [(in_pattern, varname)]
    else:
        input_paths = [(in_pattern.format(variable=x), x) for x in VARIABLES]

        for path, _ in input_paths:
            if not os.path.exists(path):
                print('Input file {} does not exist.'.format(path))
                sys.exit(-1)

    with fiona.open(boundary, 'r') as shp:
        features = []
        wgs84 = Proj('+init=EPSG:4326')
        shp_projection = Proj(shp.crs)
        bounds = shp.bounds

        ll = transform(shp_projection, wgs84, bounds[0], bounds[1])
        ur = transform(shp_projection, wgs84, bounds[2], bounds[3])

        bbox = BBox([*ll, *ur], projection=wgs84)

        for feature in shp.items():
            geometry = transform_geom(shp.crs, {'init': 'EPSG: 4326'},
                                      feature[1]['geometry'])
            features.append(geometry)

    for in_path, variable in input_paths:
        if single:
            out_path = out_pattern
        else:
            out_path = out_pattern.format(variable=variable)

        if os.path.exists(out_path):
            confirm = input(
                "The output file '{}' already exists? Do you with to replace it? [y/n] "
                .format(out_path))
            if confirm.lower().strip() not in ['y', 'yes']:
                print('Exiting...')
                sys.exit()

        with Dataset(in_path, 'r') as ds:
            coords = SpatialCoordinateVariables.from_dataset(
                ds, x_name='longitude', y_name='latitude')

            x_start, x_stop = coords.x.indices_for_range(bbox.xmin, bbox.xmax)
            y_start, y_stop = coords.y.indices_for_range(bbox.ymin, bbox.ymax)

            x_slice = slice(x_start, x_stop)
            y_slice = slice(y_start, y_stop)

            clipped_coords = coords.slice_by_bbox(bbox)

            grid = ds.variables[variable][y_slice, x_slice]

        if is_masked(grid):
            mask = grid.mask.astype('uint8')
        else:
            mask = numpy.zeros(grid.shape, dtype='uint8')

        mask |= rasterize(((x, 0) for x in features),
                          out_shape=mask.shape,
                          transform=clipped_coords.affine,
                          fill=1,
                          default_value=0)
        grid = numpy.ma.masked_where(mask == 1, grid.data)

        print('Writing {}...'.format(out_path))
        with Dataset(out_path, 'w', format='NETCDF4') as ds:
            clipped_coords.add_to_dataset(ds, 'longitude', 'latitude')
            data_var = ds.createVariable(variable,
                                         grid.dtype,
                                         dimensions=('latitude', 'longitude'),
                                         fill_value=grid.fill_value)

            if data_var.shape != grid.shape:
                grid = grid[:data_var.shape[0], :data_var.shape[1]]

            data_var[:] = grid
            set_crs(ds, variable, Proj('+init=EPSG:4326'))
Esempio n. 21
0
    def get(self, request, *args, **kwargs):
        tile_bounds = list(
            mercantile.bounds(int(self.kwargs['x']), int(self.kwargs['y']),
                              int(self.kwargs['z'])))
        extent = BBox(tile_bounds, projection=WGS84).project(WEB_MERCATOR)

        try:
            service_names = request.GET['services'].split(',')
        except KeyError:
            return HttpResponse(status=400)

        grids = []

        for service_name in service_names:
            self.service = Service.objects.get(name=service_name)
            variable = self.service.variable_set.all()[:1].get()

            native_extent = extent.project(
                pyproj.Proj(str(variable.projection)))
            dimensions = self.get_grid_spatial_dimensions(variable)

            cell_size = (float(variable.full_extent.width) / dimensions[0],
                         float(variable.full_extent.height) / dimensions[1])

            grid_bounds = [
                int(
                    math.floor(
                        float(native_extent.xmin - variable.full_extent.xmin) /
                        cell_size[0])) - 1,
                int(
                    math.floor(
                        float(native_extent.ymin - variable.full_extent.ymin) /
                        cell_size[1])) - 1,
                int(
                    math.ceil(
                        float(native_extent.xmax - variable.full_extent.xmin) /
                        cell_size[0])) + 1,
                int(
                    math.ceil(
                        float(native_extent.ymax - variable.full_extent.ymin) /
                        cell_size[1])) + 1
            ]

            grid_bounds = [
                min(max(grid_bounds[0], 0), dimensions[0]),
                min(max(grid_bounds[1], 0), dimensions[1]),
                min(max(grid_bounds[2], 0), dimensions[0]),
                min(max(grid_bounds[3], 0), dimensions[1])
            ]

            if not (grid_bounds[2] - grid_bounds[0]
                    and grid_bounds[3] - grid_bounds[1]):
                continue

            grid_extent = BBox(
                (variable.full_extent.xmin + grid_bounds[0] * cell_size[0],
                 variable.full_extent.ymin + grid_bounds[1] * cell_size[1],
                 variable.full_extent.xmin + grid_bounds[2] * cell_size[0],
                 variable.full_extent.ymin + grid_bounds[3] * cell_size[1]),
                native_extent.projection)

            if not self.is_y_increasing(variable):
                y_max = dimensions[1] - grid_bounds[1]
                y_min = dimensions[1] - grid_bounds[3]
                grid_bounds[1] = y_min
                grid_bounds[3] = y_max

            grids.append(
                self.get_grid_for_variable(variable,
                                           x_slice=(grid_bounds[0],
                                                    grid_bounds[2]),
                                           y_slice=(grid_bounds[1],
                                                    grid_bounds[3])))
            self.close_dataset()

        intersection = reduce(lambda x, y: x & y, grids)

        image = RENDERER.render_image(
            intersection,
            row_major_order=self.is_row_major(variable)).convert('RGBA')

        #  If y values are increasing, the rendered image needs to be flipped vertically
        if self.is_y_increasing(variable):
            image = image.transpose(Image.FLIP_TOP_BOTTOM)

        image = GeoImage(image, grid_extent).warp(extent, TILE_SIZE).image
        image, content_type = self.format_image(image, 'png')

        return self.create_response(request, image, content_type)
Esempio n. 22
0
def render_tif(filename_pattern, output_directory, renderer_file, save,
               renderer_type, colormap, colorspace, palette, scale,
               id_variable, lh, legend_breaks, legend_ticks, src_crs, dst_crs,
               res, resampling, anchors):
    """
    Render single-band GeoTIFF files to images.

    colormap is ignored if renderer_file is provided
    """

    filenames = glob.glob(filename_pattern)
    if not filenames:
        raise click.BadParameter('No files found matching that pattern',
                                 param='filename_pattern',
                                 param_hint='FILENAME_PATTERN')

    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    if renderer_file is not None and not save:
        if not os.path.exists(renderer_file):
            raise click.BadParameter('does not exist',
                                     param='renderer_file',
                                     param_hint='renderer_file')

        # see https://bitbucket.org/databasin/ncdjango/wiki/Home for format
        renderer_dict = json.loads(open(renderer_file).read())

        # if renderer_dict['type'] == 'stretched':
        #     colors = ','.join([str(c[0]) for c in renderer_dict['colors']])
        #     if 'min' in colors or 'max' in colors or 'mean' in colors:
        #         statistics = collect_statistics(filenames, (variable,))[variable]
        #         for entry in renderer_dict['colors']:
        #             if isinstance(entry[0], basestring):
        #                 if entry[0] in ('min', 'max', 'mean'):
        #                     entry[0] = statistics[entry[0]]
        #                 elif '*' in entry[0]:
        #                     rel_value, statistic = entry[0].split('*')
        #                     entry[0] = float(rel_value) * statistics[statistic]

        renderer = renderer_from_dict(renderer_dict)

    else:

        if renderer_type == 'stretched':
            # if palette is not None:
            #     renderer = _palette_to_stretched_renderer(palette, 'min,max', filenames, variable)
            #
            # else:
            renderer = _colormap_to_stretched_renderer(colormap, colorspace,
                                                       filenames)
        elif renderer_type == 'unique':
            renderer = UniqueValuesRenderer(_parse_colormap(colormap),
                                            colorspace)

        else:
            raise NotImplementedError('other renderers not yet built')

    # if save:
    #     if not renderer_file:
    #         raise click.BadParameter('must be provided to save', param='renderer_file', param_hint='renderer_file')
    #
    #     if os.path.exists(renderer_file):
    #         with open(renderer_file, 'r+') as output_file:
    #             data = json.loads(output_file.read())
    #             output_file.seek(0)
    #             output_file.truncate()
    #             data[variable] = renderer.serialize()
    #             output_file.write(json.dumps(data, indent=4))
    #     else:
    #         with open(renderer_file, 'w') as output_file:
    #             output_file.write(json.dumps({variable: renderer.serialize()}))

    if renderer_type == 'streteched':
        if legend_ticks is not None and not legend_breaks:
            legend_ticks = [float(v) for v in legend_ticks.split(',')]

        legend = renderer.get_legend(image_height=lh,
                                     breaks=legend_breaks,
                                     ticks=legend_ticks,
                                     max_precision=2)[0].to_image()

    elif renderer_type == 'unique':
        legend = renderer.get_legend(image_height=lh)[0].to_image()

    legend.save(os.path.join(output_directory, 'legend.png'))

    for filename in filenames:
        with rasterio.open(filename) as ds:
            print('Processing', filename)
            filename_root = os.path.split(filename)[1].replace('.nc', '')

            data = ds.read(1, masked=True)

            # # get transforms, assume last 2 dimensions on variable are spatial in row, col order
            # y_dim, x_dim = ds.variables[variable].dimensions[-2:]
            # y_len, x_len = data.shape[-2:]
            # coords = SpatialCoordinateVariables.from_dataset(ds, x_dim, y_dim)#, projection=Proj(src_crs))
            #
            # if coords.y.is_ascending_order():
            #     data = data[::-1]
            #
            reproject_kwargs = None
            if dst_crs is not None:
                # TODO: extract this out into a general trefoil reprojection function
                ds_crs = ds.crs
                if not (src_crs or ds_crs):
                    raise click.BadParameter(
                        'must provide src_crs to reproject',
                        param='src_crs',
                        param_hint='src_crs')

                dst_crs = {'init': dst_crs}
                src_crs = ds_crs if ds_crs else {'init': src_crs}

                left, bottom, top, right = ds.bounds
                dst_affine, dst_width, dst_height = calculate_default_transform(
                    left, bottom, right, top, ds.width, ds.height, src_crs,
                    dst_crs)
                dst_shape = (dst_height, dst_width)

                # proj_bbox = coords.bbox.project(Proj(dst_crs))
                #
                # x_dif = proj_bbox.xmax - proj_bbox.xmin
                # y_dif = proj_bbox.ymax - proj_bbox.ymin
                #
                # total_len = float(x_len + y_len)
                # # Cellsize is dimension weighted average of x and y dimensions per projected pixel, unless otherwise provided
                # avg_cellsize = ((x_dif / float(x_len)) * (float(x_len) / total_len)) + ((y_dif / float(y_len)) * (float(y_len) / total_len))
                #
                # cellsize = res or avg_cellsize
                # dst_affine = Affine(cellsize, 0, proj_bbox.xmin, 0, -cellsize, proj_bbox.ymax)
                # dst_shape = (
                #     max(int(ceil((y_dif) / cellsize)), 1),  # height
                #     max(int(ceil(x_dif / cellsize)), 1)  # width
                # )

                # TODO: replace with method in rasterio
                reproject_kwargs = {
                    'src_crs': src_crs,
                    'src_transform': ds.affine,
                    'dst_crs': dst_crs,
                    'dst_transform': dst_affine,
                    'resampling': getattr(Resampling, resampling),
                    'dst_shape': dst_shape
                }

                if anchors:
                    # Reproject the bbox of the output to WGS84
                    full_bbox = BBox(
                        (dst_affine.c, dst_affine.f +
                         dst_affine.e * dst_shape[0], dst_affine.c +
                         dst_affine.a * dst_shape[1], dst_affine.f),
                        projection=Proj(dst_crs))
                    wgs84_bbox = full_bbox.project(Proj(init='EPSG:4326'))
                    print('WGS84 Anchors: {0}'.format(
                        [[wgs84_bbox.ymin, wgs84_bbox.xmin],
                         [wgs84_bbox.ymax, wgs84_bbox.xmax]]))

            elif anchors:
                # Reproject the bbox of the output to WGS84
                full_bbox = BBox(ds.bounds, projection=Proj(ds.crs))
                wgs84_bbox = full_bbox.project(Proj(init='EPSG:4326'))
                print('WGS84 Anchors: {0}'.format(
                    [[wgs84_bbox.ymin, wgs84_bbox.xmin],
                     [wgs84_bbox.ymax, wgs84_bbox.xmax]]))

            image_filename = os.path.join(output_directory,
                                          '{0}.png'.format(filename_root))
            render_image(renderer,
                         data,
                         image_filename,
                         scale,
                         reproject_kwargs=reproject_kwargs)
Esempio n. 23
0
    def execute(self, bounds, zoom, basemap, single_color, kept_colors, gained_colors, species, **kwargs):
        historic = kwargs['historic']
        futures = kwargs.get('futures', [])
        opacity = kwargs.get('opacity', 1.)

        map_image = self.get_basemap_image(basemap, bounds, IMAGE_SIZE, zoom)
        results_image = self.get_results_image(
            bounds, IMAGE_SIZE, single_color, kept_colors, gained_colors, species, historic, futures
        )
        map_image.paste(Image.blend(map_image, results_image, opacity), (0, 0), results_image)
        image_data = BytesIO()
        map_image.save(image_data, 'png')

        def format_x_coord(x):
            return '{}&deg; W'.format(round(abs(x), 2)) if x < 0 else '{}&deg; E'.format(round(x, 2))

        def format_y_coord(y):
            return '{}&deg; S'.format(round(abs(y), 2)) if y < 0 else '{}&deg; N'.format(round(y, 2))

        to_world = image_to_world(BBox(bounds, projection=WGS84).project(WEB_MERCATOR), IMAGE_SIZE)

        images_dir = self.get_images_dir()
        with open(os.path.join(images_dir, 'scale.png'), 'rb') as f:
            scale_data = b64encode(f.read())

        scale_bar_x = 38
        scale_bar_y = IMAGE_SIZE[1] - 15

        scale_bar_start = transform(WEB_MERCATOR, WGS84, *to_world(scale_bar_x, scale_bar_y))
        scale_bar_end = transform(WEB_MERCATOR, WGS84, *to_world(scale_bar_x + 96, scale_bar_y))
        scale = '{} mi'.format(round(vincenty(reversed(scale_bar_start), reversed(scale_bar_end)).miles, 1))

        context = {
            'today': now(),
            'image_data': b64encode(image_data.getvalue()),
            'east': format_x_coord(bounds[0]),
            'south': format_y_coord(bounds[1]),
            'west': format_x_coord(bounds[2]),
            'north': format_y_coord(bounds[3]),
            'scale_image_data': scale_data,
            'scale': scale,
            'single_color': single_color,
            'kept_colors': self.get_colors(kept_colors, len(futures)+1),
            'gained_colors': self.get_colors(gained_colors, len(futures)+1),
            'historic': historic.replace('_', '-'),
            'futures': [
                {'rcp': RCP_LABELS[rcp], 'year': YEAR_LABELS[year]}
                for rcp, year in [x.split('_', 1) for x in futures]
            ],
            'species': SPECIES_LABELS[species],
        }

        uuid = str(uuid4())
        report_dir = os.path.join(settings.MEDIA_ROOT, uuid)
        if not os.path.exists(report_dir):
            os.makedirs(report_dir)
        path = os.path.join(report_dir, 'SPHT Report.pdf')
        with open(path, 'wb') as f:
            HTML(BytesIO(render_to_string('spht/report.html', context).encode())).write_pdf(f)

        return '{}{}/SPHT Report.pdf'.format(settings.MEDIA_URL, uuid)
Esempio n. 24
0
def test_SpatialCoordinateVariables_bbox():
    proj = Proj(init='EPSG:4326')
    bbox = BBox((10.5, 5, 110.5, 55), projection=proj)
    coords = SpatialCoordinateVariables.from_bbox(bbox, 10, 5)
    assert coords.bbox.as_list() == bbox.as_list()
Esempio n. 25
0
    def hydrate_initial_extent(self, bundle):
        if bundle.data.get('initial_extent'):
            bundle.data['initial_extent'] = BBox(bundle.data['initial_extent'])

        return bundle
Esempio n. 26
0
def test_window_for_bbox():
    coords = SpatialCoordinateVariables.from_bbox(BBox([-124, 82, -122, 90], Proj(init='epsg:4326')), 20, 20)
    window = coords.get_window_for_bbox(BBox([-123.9, 82.4, -122.1, 89.6]))

    assert window.x_slice == slice(1, 19)
    assert window.y_slice == slice(1, 19)
Esempio n. 27
0
    def hydrate_full_extent(self, bundle):
        if bundle.data.get('full_extent'):
            bundle.data['full_extent'] = BBox(bundle.data['full_extent'])

        return bundle
Esempio n. 28
0
def to_netcdf(
        files,
        output,
        variable,
        dtype,
        src_crs,
        x_name,
        y_name,
        z_name,
        datetime_pattern,
        netcdf3,
        compress,
        packed,
        xy_dtype,
        # z_dtype,
        calendar,
        autocrop):
    """
    Convert rasters to NetCDF and stack them according to a dimension.

    X and Y dimension names will be named according to the source projection (lon, lat if geographic projection, x, y
    otherwise) unless specified.

    Will overwrite an existing NetCDF file.

    Only the first band of the input will be turned into a NetCDF file.
    """

    # TODO: add format string template to this to parse out components

    filenames = list(glob.glob(files))
    if not filenames:
        raise click.BadParameter('No files found matching that pattern',
                                 param='files',
                                 param_hint='FILES')

    z_values = []

    if datetime_pattern is not None:
        datetimes = (datetime.strptime(x, datetime_pattern) for x in filenames)

        # Sort both datimes and filenames by datetimes
        z_values, filenames = [
            list(x)
            for x in zip(*sorted(zip(datetimes, filenames), key=itemgetter(0)))
        ]

    items = tuple(enumerate(filenames))

    has_z = len(filenames) > 1

    if has_z and not z_name:
        raise click.BadParameter('Required when > 1 input file',
                                 param='--z',
                                 param_hint='--z')

    if src_crs:
        src_crs = CRS.from_string(src_crs)

    template_ds = rasterio.open(filenames[0])
    src_crs = template_ds.crs or src_crs

    if not src_crs:
        raise click.BadParameter(
            'Required when no CRS information available in source files',
            param='--src-crs',
            param_hint='--src-crs')

    prj = Proj(**src_crs.to_dict())
    bounds = template_ds.bounds
    width = template_ds.width
    height = template_ds.height
    window = None

    src_dtype = numpy.dtype(template_ds.dtypes[0])
    dtype = numpy.dtype(dtype) if dtype else src_dtype

    if dtype == src_dtype:
        fill_value = template_ds.nodata
        if src_dtype.kind in ('u', 'i'):
            # nodata always comes from rasterio as floating point
            fill_value = int(fill_value)
    else:
        fill_value = get_fill_value(dtype)

    x_name = x_name or ('lon' if src_crs.is_geographic else 'x')
    y_name = y_name or ('lat' if src_crs.is_geographic else 'y')

    var_kwargs = {'fill_value': fill_value}

    format = 'NETCDF3_CLASSIC' if netcdf3 else 'NETCDF4'

    with Dataset(output, 'w', format=format) as out:
        if packed or autocrop:
            mins = []
            maxs = []
            windows = []

            click.echo('Inspecting input datasets...')
            with click.progressbar(items) as iter:
                for index, filename in iter:
                    with rasterio.open(filename) as src:
                        data = src.read(1, masked=True)
                        if packed:
                            mins.append(data.min())
                            maxs.append(data.max())
                        if autocrop:
                            data_window = get_data_window(data)
                            if data_window != ((0, height), (0, width)):
                                windows.append(data_window)

            if packed:
                min_value = min(mins)
                max_value = max(maxs)
                scale, offset = get_pack_atts(dtype, min_value, max_value)
            if autocrop and windows:
                window = union(windows)
                bounds = template_ds.window_bounds(window)
                height = window[0][1] - window[0][0]
                width = window[1][1] - window[1][0]

        coords = SpatialCoordinateVariables.from_bbox(BBox(bounds, prj), width,
                                                      height, xy_dtype)
        coords.add_to_dataset(out, x_name, y_name, zlib=compress)

        var_dimensions = [y_name, x_name]
        shape = list(coords.shape)
        if has_z:
            shape.insert(0, len(filenames))
            out.createDimension(z_name, shape[0])
            var_dimensions.insert(0, z_name)
            if z_values:
                dates = DateVariable(numpy.array(z_values),
                                     units_start_date=z_values[0],
                                     calendar=calendar)
                dates.add_to_dataset(out, z_name)

        click.echo('Creating {0}:{1} with shape {2}'.format(
            output, variable, shape))

        out_var = out.createVariable(variable,
                                     dtype,
                                     dimensions=var_dimensions,
                                     zlib=compress,
                                     **var_kwargs)
        set_crs(out, variable, prj, set_proj4_att=True)

        if packed:
            out_var.setncattr('scale_factor', scale)
            out_var.setncattr('add_offset', offset)

        click.echo('Copying data from input files...')
        with click.progressbar(items) as iter:
            for index, filename in iter:
                with rasterio.open(filename) as src:
                    data = src.read(1, masked=True, window=window)

                    if has_z:
                        out_var[index, :] = data
                    else:
                        out_var[:] = data

                out.sync()
Esempio n. 29
0
    def __init__(self,
                 size,
                 point,
                 zoom,
                 center,
                 tile_layers,
                 region,
                 zone_id,
                 opacity,
                 constraint_geometry=None):
        self._configure_event_loop()

        self.num_tiles = [
            math.ceil(size[x] / TILE_SIZE[x]) + 1 for x in (0, 1)
        ]
        center_tile = mercantile.tile(center[1], center[0], zoom)

        mercator = Proj(init='epsg:3857')
        wgs84 = Proj(init='epsg:4326')

        center_tile_bbox = BBox(mercantile.bounds(*center_tile),
                                projection=wgs84).project(mercator,
                                                          edge_points=0)
        center_to_image = world_to_image(center_tile_bbox, TILE_SIZE)
        center_to_world = image_to_world(center_tile_bbox, TILE_SIZE)
        center_point_px = center_to_image(*mercantile.xy(center[1], center[0]))

        self.ul_tile = mercantile.tile(*transform(
            mercator, wgs84,
            *center_to_world(center_point_px[0] -
                             math.ceil(IMAGE_SIZE[0] / 2), center_point_px[1] -
                             math.ceil(IMAGE_SIZE[1] / 2)), zoom))

        lr_tile = mercantile.Tile(x=min(2**zoom,
                                        self.ul_tile.x + self.num_tiles[0]),
                                  y=min(2**zoom,
                                        self.ul_tile.y + self.num_tiles[1]),
                                  z=zoom)

        ul = mercantile.xy(*mercantile.ul(*self.ul_tile))
        lr = mercantile.xy(*mercantile.ul(*lr_tile))

        self.image_bbox = BBox((ul[0], lr[1], lr[0], ul[1]))
        self.image_size = (TILE_SIZE[0] * self.num_tiles[0],
                           TILE_SIZE[1] * self.num_tiles[1])

        self.to_image = world_to_image(self.image_bbox, self.image_size)
        self.to_world = image_to_world(self.image_bbox, self.image_size)

        self.point_px = [
            round(x) for x in self.to_image(*mercantile.xy(*point))
        ]
        self.center_point_px = self.to_image(
            *mercantile.xy(center[1], center[0]))

        self.target_size = size
        self.point = point
        self.zoom = zoom
        self.center = center
        self.tile_layers = tile_layers
        self.region = region
        self.zone_id = zone_id
        self.opacity = opacity
        self.constraint_geometry = constraint_geometry
Esempio n. 30
0
    def handle(self, region_name, *args, **options):
        name = region_name[0]

        from django.conf import settings

        BASE_DIR = settings.NC_SERVICE_DATA_ROOT

        # determine extent and lat/lon variable names from DEM
        dem_path = os.path.join(BASE_DIR, "regions", name, "{}_dem.nc".format(name))
        with Dataset(dem_path, "r") as ds:
            dims = ds.dimensions.keys()
            lat = "lat" if "lat" in dims else "latitude"
            lon = "lon" if "lon" in dims else "longitude"
            l = float(ds.variables[lon][:].min())
            b = float(ds.variables[lat][:].min())
            r = float(ds.variables[lon][:].max())
            t = float(ds.variables[lat][:].max())
            extent = BBox((l, b, r, t), projection=pyproj.Proj(WGS84))

        # Generate DEM service
        with transaction.atomic():
            print("Adding {}".format(name))
            print("---")
            print("elevation")

            service_name = "{}_dem".format(name)
            if Service.objects.filter(name__iexact=service_name).exists():
                print("{} already exists, skipping.".format(service_name))
            else:
                dem_service = Service.objects.create(
                    name=service_name,
                    data_path="regions/{name}/{name}_dem.nc".format(name=name),
                    projection=WGS84,
                    full_extent=extent,
                    initial_extent=extent,
                )
                with Dataset(dem_path, "r") as ds:
                    v_min = numpy.nanmin(ds.variables["elevation"][:]).item()
                    v_max = numpy.nanmax(ds.variables["elevation"][:]).item()
                    renderer = StretchedRenderer([(v_min, Color(0, 0, 0)), (v_max, Color(255, 255, 255))])
                    Variable.objects.create(
                        service=dem_service,
                        index=0,
                        variable="elevation",
                        projection=WGS84,
                        x_dimension=lon,
                        y_dimension=lat,
                        name="elevation",
                        renderer=renderer,
                        full_extent=extent,
                    )

        # Generate ClimateNA services
        with transaction.atomic():
            for year in PERIODS:

                print("")
                print(year)
                print("---")
                for var in VARS:
                    print(var)

                    service_name = "{}_{}Y_{}".format(name, year, var)
                    if not Service.objects.filter(name__iexact=service_name).exists():
                        data_path = "regions/{name}/{year}Y/{name}_{year}Y_{var}.nc".format(
                            name=name, year=year, var=var
                        )

                        if not os.path.exists(os.path.join(BASE_DIR, data_path)):
                            print("{} does not exist, skipping.".format(service_name))
                            continue

                        service = Service.objects.create(
                            name=service_name,
                            data_path=data_path,
                            projection=WGS84,
                            full_extent=extent,
                            initial_extent=extent,
                        )

                        with Dataset(os.path.join(BASE_DIR, service.data_path), "r") as ds:
                            dims = ds.dimensions.keys()
                            lat = "lat" if "lat" in dims else "latitude"
                            lon = "lon" if "lon" in dims else "longitude"
                            v_min = numpy.nanmin(ds.variables[var][:]).item()
                            v_max = numpy.nanmax(ds.variables[var][:]).item()
                            renderer = StretchedRenderer([(v_min, Color(0, 0, 0)), (v_max, Color(255, 255, 255))])
                            variable = Variable.objects.create(
                                service=service,
                                index=0,
                                variable=var,
                                projection=WGS84,
                                x_dimension=lon,
                                y_dimension=lat,
                                name=var,
                                renderer=renderer,
                                full_extent=extent,
                            )
                    else:
                        print("{} already exists, skipping.".format(service_name))