def test_get_auto_params_for_catalogue(): if os.path.exists('test_cataloguetools'): shutil.rmtree('test_cataloguetools') dataio = DataIO(dirname='test_cataloguetools') #~ localdir, filenames, params = download_dataset(name='olfactory_bulb') localdir, filenames, params = download_dataset(name='locust') dataio.set_data_source(type='RawData', filenames=filenames, **params) params = get_auto_params_for_catalogue(dataio) print(params) print(params['cluster_method']) print(params['cluster_kargs'])
def test_apply_all_catalogue_steps(): if os.path.exists('test_cataloguetools'): shutil.rmtree('test_cataloguetools') dataio = DataIO(dirname='test_cataloguetools') #~ localdir, filenames, params = download_dataset(name='olfactory_bulb') localdir, filenames, params = download_dataset(name='locust') dataio.set_data_source(type='RawData', filenames=filenames, **params) params = get_auto_params_for_catalogue(dataio) cc = CatalogueConstructor(dataio, chan_grp=0) apply_all_catalogue_steps(cc, params, verbose=True)
def test_peeler(): dataio = DataIO(dirname='test_peeler') print(dataio) initial_catalogue = dataio.load_catalogue(chan_grp=0) peeler = Peeler(dataio) peeler.change_params(catalogue=initial_catalogue, chunksize=1024) t1 = time.perf_counter() peeler.run(progressbar=False) t2 = time.perf_counter() print('peeler.run_loop', t2 - t1)
def test_peeler_with_and_without_preprocessor(): if ON_CI_CLOUD: engines = ['geometrical'] else: engines = ['geometrical', 'geometrical_opencl'] #~ engines = ['geometrical_opencl'] for engine in engines: for i in range(2): #~ for i in [1]: print() if i == 0: print(engine, 'without processing') dataio = DataIO(dirname='test_peeler') else: print(engine, 'with processing') dataio = DataIO(dirname='test_peeler2') catalogue = dataio.load_catalogue(chan_grp=0) peeler = Peeler(dataio) peeler.change_params(engine=engine, catalogue=catalogue, chunksize=1024) t1 = time.perf_counter() peeler.run(progressbar=False) t2 = time.perf_counter() print('peeler run_time', t2 - t1) spikes = dataio.get_spikes(chan_grp=0).copy() labels = catalogue['clusters']['cluster_label'] count_by_label = [ np.sum(spikes['cluster_label'] == label) for label in labels ] print(labels) print(count_by_label)
def test_peeler_several_chunksize(): dataio = DataIO(dirname='test_peeler') print(dataio) catalogue = dataio.load_catalogue(chan_grp=0) all_spikes = [] sig_length = dataio.get_segment_length(0) chunksizes = [174, 512, 1024, 1023, 10000, 150000] #~ chunksizes = [512, 1024,] for chunksize in chunksizes: print('**', chunksize, '**') peeler = Peeler(dataio) peeler.change_params(catalogue=catalogue, chunksize=chunksize) t1 = time.perf_counter() peeler.run_offline_loop_one_segment(seg_num=0, progressbar=False) t2 = time.perf_counter() print('n_side', peeler.n_side, 'n_span', peeler.n_span, 'peak_width', peeler.peak_width) print('peeler.run_loop', t2 - t1) spikes = dataio.get_spikes(seg_num=0, chan_grp=0) all_spikes.append(spikes) # clip to last spike last = min([spikes[-1]['index'] for spikes in all_spikes]) for i, chunksize in enumerate(chunksizes): spikes = all_spikes[i] all_spikes[i] = spikes[spikes['index'] <= last] previsous_spikes = None for i, chunksize in enumerate(chunksizes): print('**', chunksize, '**') spikes = all_spikes[i] is_sorted = np.all(np.diff(spikes['index']) >= 0) assert is_sorted labeled_spike = spikes[spikes['cluster_label'] >= 0] unlabeled_spike = spikes[spikes['cluster_label'] < 0] print('labeled_spike.size', labeled_spike.size, 'unlabeled_spike.size', unlabeled_spike.size) if previsous_spikes is not None: assert previsous_spikes.size == spikes.size np.testing.assert_array_equal(previsous_spikes['index'], spikes['index']) np.testing.assert_array_equal(previsous_spikes['cluster_label'], spikes['cluster_label']) previsous_spikes = spikes
def test_plot_signals(): dataio = DataIO('test_matplotlibplot') catalogueconstructor = CatalogueConstructor(dataio=dataio, chan_grp=0) plot_signals(dataio, signal_type='initial') plot_signals(dataio, signal_type='processed') plot_signals(catalogueconstructor, signal_type='processed', with_peaks=True, time_slice=(2., 3)) plot_signals(catalogueconstructor, signal_type='processed', with_span=True, time_slice=(2., 3))
def test_all_decomposition(): dirname = 'test_catalogueconstructor' dataio = DataIO(dirname=dirname) cc = catalogueconstructor = CatalogueConstructor(dataio=dataio) print(dataio) print(cc) methods = ['global_pca', 'pca_by_channel', 'peak_max','neighborhood_pca' ] #'neighborhood_pca', 'tsne', 'pca_by_channel_then_tsne' for method in methods: t0 = time.perf_counter() cc.extract_some_features(method=method) t1 = time.perf_counter() print('extract_some_features', method, t1-t0)
def test_auto_merge(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_trash_not_aligned') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) t1 = time.perf_counter() cc.auto_merge_cluster() t2 = time.perf_counter() print('auto_merge_cluster', t2 - t1) cc.create_savepoint(name='after_auto_merge_cluster')
def test_pruningshears(): dirname = 'test_cluster' dataio = DataIO(dirname=dirname) print(dataio) cc = CatalogueConstructor(dataio=dataio) cc.extract_some_features(method='pca_by_channel') #~ print(dataio) #~ print(cc) t0 = time.perf_counter() cc.find_clusters(method='pruningshears', print_debug=True) t1 = time.perf_counter() print('cluster', t1 - t0)
def test_trash_low_extremum(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_auto_merge_cluster') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) print(cc) t1 = time.perf_counter() cc.trash_low_extremum() t2 = time.perf_counter() print('trash_low_extremum', t2 - t1) cc.create_savepoint(name='after_trash_low_extremum') print(cc)
def setup_catalogue(): if os.path.exists('test_peeler'): shutil.rmtree('test_peeler') dataio = DataIO(dirname='test_peeler') localdir, filenames, params = download_dataset(name='olfactory_bulb') dataio.set_data_source(type='RawData', filenames=filenames, **params) dataio.add_one_channel_group(channels=[5, 6, 7, 8, 9]) catalogueconstructor = CatalogueConstructor(dataio=dataio) fullchain_kargs = { 'duration': 60., 'preprocessor': { 'highpass_freq': 300., 'chunksize': 1024, 'lostfront_chunksize': 100, }, 'peak_detector': { 'peak_sign': '-', 'relative_threshold': 7., 'peak_span': 0.0005, #~ 'peak_span' : 0.000, }, 'extract_waveforms': { 'n_left': -25, 'n_right': 40, 'nb_max': 10000, }, 'clean_waveforms': { 'alien_value_threshold': 60., }, 'noise_snippet': { 'nb_snippet': 300, }, } apply_all_catalogue_steps(catalogueconstructor, fullchain_kargs, 'global_pca', {'n_components': 12}, 'kmeans', {'n_clusters': 12}, verbose=True) catalogueconstructor.trash_small_cluster() catalogueconstructor.make_catalogue_for_peeler()
def test_peeler_sparse_opencl(): dataio = DataIO(dirname='test_peeler') initial_catalogue = dataio.load_catalogue(chan_grp=0) peeler = Peeler(dataio) peeler.change_params( catalogue=initial_catalogue, chunksize=1024, use_sparse_template=True, sparse_threshold_mad=1.5, use_opencl_with_sparse=True, ) t1 = time.perf_counter() peeler.run(progressbar=False) t2 = time.perf_counter() print('peeler.run_loop', t2 - t1)
def test_auto_split(): dirname = 'test_cleancluster' restore_savepoint(dirname, savepoint='after_find_clusters') dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) cc.find_clusters(method='pruningshears') print(cc) print(cc.n_jobs) t1 = time.perf_counter() cc.auto_split_cluster() t2 = time.perf_counter() print('auto_split_cluster', t2 - t1) print(cc) cc.create_savepoint(name='after_auto_split')
def debug_one_decomposition(): dirname = 'test_catalogueconstructor' dataio = DataIO(dirname=dirname) cc = catalogueconstructor = CatalogueConstructor(dataio=dataio) print(dataio) print(cc) t0 = time.perf_counter() #~ cc.extract_some_features(method='global_pca', n_components=7) #~ cc.extract_some_features(method='peak_max') #~ cc.extract_some_features(method='pca_by_channel', n_components_by_channel=3) cc.extract_some_features(method='neighborhood_pca', n_components_by_neighborhood=3, radius_um=500) print(cc.channel_to_features) print(cc.channel_to_features.shape) t1 = time.perf_counter() print('extract_some_features', t1 - t0)
def test_sawchaincut(): dirname = 'test_cluster' dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) #~ print(dataio) #~ print(cc) t0 = time.perf_counter() cc.find_clusters(method='sawchaincut', print_debug=True) t1 = time.perf_counter() print('cluster', t1 - t0) #~ exit() #~ print(cc) if __name__ == '__main__': app = mkQApp() win = CatalogueWindow(cc) win.show() app.exec_()
def test_pruningshears(): dirname = 'test_cluster' dataio = DataIO(dirname=dirname) print(dataio) cc = CatalogueConstructor(dataio=dataio) #~ cc.extract_some_features(method='pca_by_channel') #~ print(dataio) #~ print(cc) t0 = time.perf_counter() cc.find_clusters(method='pruningshears', print_debug=True) t1 = time.perf_counter() print('cluster', t1 - t0) if __name__ == '__main__': app = mkQApp() win = CatalogueWindow(cc) win.show() app.exec_()
def test_peeler_classic(): dataio = DataIO(dirname='test_peeler') catalogue = dataio.load_catalogue(chan_grp=0, name='with_oversampling') peeler = Peeler(dataio) peeler.change_params(engine='classic', catalogue=catalogue, chunksize=1024, argmin_method='numba') #~ argmin_method='opencl') t1 = time.perf_counter() peeler.run(progressbar=False) t2 = time.perf_counter() print('peeler.run_loop', t2 - t1) spikes = dataio.get_spikes(chan_grp=0).copy() labels = catalogue['clusters']['cluster_label'] count_by_label = [ np.sum(spikes['cluster_label'] == label) for label in labels ] print(labels) print(count_by_label)
def test_peeler_argmin_methods(): dataio = DataIO(dirname='test_peeler') catalogue = dataio.load_catalogue(chan_grp=0, name='with_oversampling') argmin_methods = ['opencl', 'numba', 'pythran'] #~ argmin_methods = ['opencl', 'pythran'] for argmin_method in argmin_methods: peeler = Peeler(dataio) peeler.change_params( engine='classic', catalogue=catalogue, chunksize=1024, argmin_method=argmin_method, cl_platform_index=0, cl_device_index=0, ) t1 = time.perf_counter() peeler.run(progressbar=False) t2 = time.perf_counter() print(argmin_method, 'peeler.run_loop', t2 - t1)
def test_compare_peeler(): dataio = DataIO(dirname='test_peeler') print(dataio) all_spikes = [] #~ for peeler_class in [Peeler,]: #~ for peeler_class in [Peeler_OpenCl,]: for peeler_class in [Peeler, Peeler_OpenCl]: print() print(peeler_class) initial_catalogue = dataio.load_catalogue(chan_grp=0) peeler = peeler_class(dataio) peeler.change_params(catalogue=initial_catalogue, chunksize=1024) t1 = time.perf_counter() #~ peeler.run_offline_loop_one_segment(duration=None, progressbar=False) peeler.run_offline_loop_one_segment(duration=4., progressbar=False) t2 = time.perf_counter() print('peeler.run_loop', t2 - t1) all_spikes.append(dataio.get_spikes(chan_grp=0).copy())
def test_peeler_empty_catalogue(): """ This test peeler with empty catalogue. This is like a peak detector. Check several chunksize and compare to offline-one-buffer. """ dataio = DataIO(dirname='test_peeler') #~ print(dataio) catalogue = dataio.load_catalogue(chan_grp=0) # empty catalogue for debug peak detection s = catalogue['centers0'].shape empty_centers = np.zeros((0, s[1], s[2]), dtype='float32') catalogue['centers0'] = empty_centers catalogue['centers1'] = empty_centers catalogue['centers2'] = empty_centers catalogue['cluster_labels'] = np.zeros(0, dtype=catalogue['cluster_labels'].dtype) sig_length = dataio.get_segment_length(0) chunksizes = [ 101, 174, 512, 1024, 1023, 10000, 150000] #~ chunksizes = [1024,] previous_peak = None for chunksize in chunksizes: print('**', chunksize, '**') peeler = Peeler(dataio) peeler.change_params(engine='classic', catalogue=catalogue,chunksize=chunksize) t1 = time.perf_counter() #~ peeler.run(progressbar=False) peeler.run_offline_loop_one_segment(seg_num=0, progressbar=False) t2 = time.perf_counter() #~ print('n_side', peeler.n_side, 'n_span', peeler.n_span, 'peak_width', peeler.peak_width) #~ print('peeler.run_loop', t2-t1) spikes = dataio.get_spikes(seg_num=0, chan_grp=0) labeled_spike = spikes[spikes['cluster_label']>=0] unlabeled_spike = spikes[spikes['cluster_label']<0] assert labeled_spike.size == 0 is_sorted = np.all(np.diff(unlabeled_spike['index'])>=0) assert is_sorted online_peaks = unlabeled_spike['index'] engine = peeler.peeler_engine i_stop = sig_length-catalogue['signal_preprocessor_params']['lostfront_chunksize']-engine.n_side+engine.n_span sigs = dataio.get_signals_chunk(signal_type='processed', i_stop=i_stop) offline_peaks = detect_peaks_in_chunk(sigs, engine.n_span, engine.relative_threshold, engine.peak_sign) offline_peaks = offline_peaks[offline_peaks<=online_peaks[-1]] assert offline_peaks.size == online_peaks.size np.testing.assert_array_equal(offline_peaks, online_peaks) if previous_peak is not None: last = min(previous_peak[-1], online_peaks[-1]) previous_peak = previous_peak[previous_peak<=last] online_peaks_cliped = online_peaks[online_peaks<=last] assert previous_peak.size == online_peaks_cliped.size np.testing.assert_array_equal(previous_peak, online_peaks_cliped) previous_peak = online_peaks
def test_summary_noise(): dataio = DataIO(dirname='test_report') summary_noise(dataio, chan_grp=0)
def test_create_savepoint_catalogue_constructor(): dataio = DataIO(dirname='test_catalogueconstructor') catalogueconstructor = CatalogueConstructor(dataio=dataio) copy_path = catalogueconstructor.create_savepoint() print(copy_path)
def test_export_spikes(): dataio = DataIO(dirname='test_peeler') dataio.export_spikes()
def test_ratio_amplitude(): dataio = DataIO(dirname='test_catalogueconstructor') catalogueconstructor = CatalogueConstructor(dataio=dataio) pairs = catalogueconstructor.detect_similar_waveform_ratio(0.5) print(pairs)
def compare_nb_waveforms(): if os.path.exists('test_catalogueconstructor'): shutil.rmtree('test_catalogueconstructor') dataio = DataIO(dirname='test_catalogueconstructor') localdir, filenames, params = download_dataset(name='olfactory_bulb') dataio.set_data_source(type='RawData', filenames=filenames, **params) dataio.add_one_channel_group(channels=range(14), chan_grp=0) cc = CatalogueConstructor(dataio=dataio) cc.set_global_params( chunksize=1024, memory_mode='ram', mode='dense', n_jobs=1, #~ adjacency_radius_um=None, ) cc.set_preprocessor_params( #signal preprocessor highpass_freq=300, lowpass_freq=5000., common_ref_removal=False, smooth_size=0, lostfront_chunksize=None) cc.set_peak_detector_params( #peak detector method='global', engine='numpy', peak_sign='-', relative_threshold=7, peak_span_ms=0.5, #~ adjacency_radius_um=None, ) t1 = time.perf_counter() cc.estimate_signals_noise(seg_num=0, duration=10.) t2 = time.perf_counter() print('estimate_signals_noise', t2 - t1) t1 = time.perf_counter() cc.run_signalprocessor() t2 = time.perf_counter() print('run_signalprocessor', t2 - t1) print(cc) fig, axs = plt.subplots(nrows=2) cc.set_waveform_extractor_params(wf_left_ms=-2.0, wf_right_ms=3.0) t1 = time.perf_counter() cc.sample_some_peaks(mode='rand', nb_max=5000) t2 = time.perf_counter() print('sample_some_peaks', t2 - t1) colors = ['r', 'g', 'b', 'y'] for i, nb_max in enumerate([100, 500, 1000, 2000]): cc.sample_some_peaks(mode='rand', nb_max=nb_max) #~ catalogueconstructor.extract_some_waveforms(wf_left_ms=-2.0, wf_right_ms=3.0, nb_max=nb_max) #~ print(catalogueconstructor.some_waveforms.shape) t1 = time.perf_counter() wf = cc.get_some_waveforms() t2 = time.perf_counter() print('get_some_waveforms', nb_max, t2 - t1) #~ wf = catalogueconstructor.some_waveforms wf = wf.swapaxes(1, 2).reshape(wf.shape[0], -1) axs[0].plot(np.median(wf, axis=0), color=colors[i], label='nb_max {}'.format(nb_max)) axs[1].plot(np.mean(wf, axis=0), color=colors[i], label='nb_max {}'.format(nb_max)) axs[0].legend() axs[0].set_title('median') axs[1].set_title('mean') plt.show()
def test_catalogue_constructor(): if os.path.exists('test_catalogueconstructor'): shutil.rmtree('test_catalogueconstructor') dataio = DataIO(dirname='test_catalogueconstructor') localdir, filenames, params = download_dataset(name='olfactory_bulb') #~ localdir, filenames, params = download_dataset(name='locust') dataio.set_data_source(type='RawData', filenames=filenames, **params) channels = range(14) #~ channels=list(range(4)) dataio.add_one_channel_group(channels=channels, chan_grp=0) cc = CatalogueConstructor(dataio=dataio) for memory_mode in ['ram', 'memmap']: for mode in ['dense', 'sparse']: print('*' * 5) print('memory_mode', memory_mode, 'mode', mode) if mode == 'dense': peak_engine = 'numpy' peak_method = 'global' adjacency_radius_um = None elif mode == 'sparse': peak_engine = 'numpy' peak_method = 'geometrical' adjacency_radius_um = 450. cc.set_global_params( chunksize=1024, memory_mode=memory_mode, mode=mode, n_jobs=1, #~ adjacency_radius_um=adjacency_radius_um, ) cc.set_preprocessor_params( #signal preprocessor highpass_freq=300, lowpass_freq=5000., common_ref_removal=False, smooth_size=0, lostfront_chunksize=None) cc.set_peak_detector_params( #peak detector method=peak_method, engine=peak_engine, peak_sign='-', relative_threshold=7, peak_span_ms=0.5, adjacency_radius_um=adjacency_radius_um, ) t1 = time.perf_counter() cc.estimate_signals_noise(seg_num=0, duration=10.) t2 = time.perf_counter() print('estimate_signals_noise', t2 - t1) t1 = time.perf_counter() cc.run_signalprocessor(duration=10., detect_peak=True) t2 = time.perf_counter() print('run_signalprocessor_loop', t2 - t1) for seg_num in range(dataio.nb_segment): mask = cc.all_peaks['segment'] == seg_num print('seg_num', seg_num, 'nb peak', np.sum(mask)) # redetect peak cc.re_detect_peak(method=peak_method, engine=peak_engine, peak_sign='-', relative_threshold=5, peak_span_ms=0.7, adjacency_radius_um=adjacency_radius_um) for seg_num in range(dataio.nb_segment): mask = cc.all_peaks['segment'] == seg_num print('seg_num', seg_num, 'nb peak', np.sum(mask)) cc.set_waveform_extractor_params(n_left=-25, n_right=40) t1 = time.perf_counter() cc.clean_peaks(alien_value_threshold=100, mode='extremum_amplitude') t2 = time.perf_counter() print('clean_peaks extremum_amplitude', t2 - t1) t1 = time.perf_counter() cc.clean_peaks(alien_value_threshold=100, mode='full_waveform') t2 = time.perf_counter() print('clean_peaks full_waveforms', t2 - t1) t1 = time.perf_counter() cc.sample_some_peaks(mode='rand', nb_max=5000) t2 = time.perf_counter() print('sample_some_peaks', t2 - t1) print(cc) #extract_some_noise t1 = time.perf_counter() cc.extract_some_noise(nb_snippet=400) t2 = time.perf_counter() print('extract_some_noise', t2 - t1) if mode == 'dense': # PCA t1 = time.perf_counter() cc.extract_some_features(method='global_pca', n_components=12) t2 = time.perf_counter() print('project pca', t2 - t1) # cluster t1 = time.perf_counter() cc.find_clusters(method='kmeans', n_clusters=11) t2 = time.perf_counter() print('find_clusters', t2 - t1) elif mode == 'sparse': # PCA t1 = time.perf_counter() cc.extract_some_features(method='pca_by_channel', n_components_by_channel=3) t2 = time.perf_counter() print('project pca', t2 - t1) # cluster t1 = time.perf_counter() cc.find_clusters(method='pruningshears') t2 = time.perf_counter() print('find_clusters', t2 - t1) print(cc) t1 = time.perf_counter() cc.auto_split_cluster() t2 = time.perf_counter() print('auto_split_cluster', t2 - t1) t1 = time.perf_counter() cc.trash_not_aligned() t2 = time.perf_counter() print('trash_not_aligned', t2 - t1) t1 = time.perf_counter() cc.auto_merge_cluster() t2 = time.perf_counter() print('auto_merge_cluster', t2 - t1) t1 = time.perf_counter() cc.trash_low_extremum() t2 = time.perf_counter() print('trash_low_extremum', t2 - t1) t1 = time.perf_counter() cc.trash_small_cluster() t2 = time.perf_counter() print('trash_small_cluster', t2 - t1)
def compare_nb_waveforms(): if os.path.exists('test_catalogueconstructor'): shutil.rmtree('test_catalogueconstructor') dataio = DataIO(dirname='test_catalogueconstructor') localdir, filenames, params = download_dataset(name='olfactory_bulb') dataio.set_data_source(type='RawData', filenames=filenames, **params) dataio.add_one_channel_group(channels=range(14), chan_grp=0) catalogueconstructor = CatalogueConstructor(dataio=dataio) catalogueconstructor.set_preprocessor_params( chunksize=1024, #signal preprocessor highpass_freq=300., lowpass_freq=5000., lostfront_chunksize=128, #peak detector peak_sign='-', relative_threshold=7, peak_span=0.0005, ) t1 = time.perf_counter() catalogueconstructor.estimate_signals_noise(seg_num=0, duration=10.) t2 = time.perf_counter() print('estimate_signals_noise', t2 - t1) t1 = time.perf_counter() catalogueconstructor.run_signalprocessor() t2 = time.perf_counter() print('run_signalprocessor', t2 - t1) print(catalogueconstructor) fig, axs = plt.subplots(nrows=2) colors = ['r', 'g', 'b'] for i, nb_max in enumerate([100, 1000, 10000]): t1 = time.perf_counter() catalogueconstructor.extract_some_waveforms(n_left=-20, n_right=30, nb_max=nb_max) t2 = time.perf_counter() print('extract_some_waveforms', nb_max, t2 - t1) print(catalogueconstructor.some_waveforms.shape) wf = catalogueconstructor.some_waveforms wf = wf.swapaxes(1, 2).reshape(wf.shape[0], -1) axs[0].plot(np.median(wf, axis=0), color=colors[i], label='nb_max {}'.format(nb_max)) axs[1].plot(np.mean(wf, axis=0), color=colors[i], label='nb_max {}'.format(nb_max)) axs[0].legend() axs[0].set_title('median') axs[1].set_title('mean') plt.show()
def test_summary_catalogue_clusters(): dataio = DataIO(dirname='test_report') #~ summary_catalogue_clusters(dataio, chan_grp=0) summary_catalogue_clusters(dataio, chan_grp=0, labels=[0])
def debug_compare_peeler_engines(): dataio = DataIO(dirname='test_peeler') print(dataio) engine_list = [ ('classic argmin opencl', 'classic', { 'argmin_method': 'opencl' }), ('classic argmin numba', 'classic', { 'argmin_method': 'numba' }), ('geometrical argmin opencl', 'geometrical', { 'argmin_method': 'opencl' }), ('geometrical argmin numba', 'geometrical', { 'argmin_method': 'numba' }), ('geometrical_opencl', 'geometrical_opencl', {}), ] all_spikes = [] for name, engine, kargs in engine_list: #~ print() #~ print(name) catalogue = dataio.load_catalogue(chan_grp=0, name='with_oversampling') peeler = Peeler(dataio) peeler.change_params(engine=engine, catalogue=catalogue, chunksize=1024, **kargs) t1 = time.perf_counter() peeler.run(progressbar=False, duration=None) t2 = time.perf_counter() print(name, 'run', t2 - t1) spikes = dataio.get_spikes(chan_grp=0).copy() #~ print(spikes.size) all_spikes.append(spikes) #~ print(dataio.get_spikes(chan_grp=0).size) print() #~ all_spikes[0] = all_spikes[0][88+80:88+81+10] #~ all_spikes[1] = all_spikes[1][88+80:88+81+10] #~ all_spikes[0] = all_spikes[0][:88+81] #~ all_spikes[1] = all_spikes[1][:88+81] labels = catalogue['clusters']['cluster_label'] for i, spikes in enumerate(all_spikes): name = engine_list[i][0] print() print(name) print(spikes[:10]) print(spikes.size) count_by_label = [ np.sum(spikes['cluster_label'] == label) for label in labels ] print(count_by_label)
def test_generate_report(): dataio = DataIO(dirname='test_report') generate_report(dataio)