def test_pruningshears(): dirname = 'test_cluster' dataio = DataIO(dirname=dirname) print(dataio) cc = CatalogueConstructor(dataio=dataio) #~ print(cc.mode) #~ exit() #~ cc.extract_some_features(method='pca_by_channel') #~ print(dataio) #~ print(cc) if dataset_name == 'olfactory_bulb': kargs = dict(adjacency_radius_um = 420) else: kargs = {} t0 = time.perf_counter() #~ cc.find_clusters(method='pruningshears', print_debug=True) #~ cc.find_clusters(method='pruningshears', print_debug=True, debug_plot=True, **kargs) cc.find_clusters(method='pruningshears', print_debug=False, debug_plot=False, **kargs) t1 = time.perf_counter() print('cluster', t1-t0) if __name__ == '__main__': app = mkQApp() win = CatalogueWindow(cc) win.show() app.exec_()
def test_sawchaincut(): #~ dirname = 'test_catalogueconstructor' #~ dirname = '/home/samuel/Documents/projet/tridesclous/example/tridesclous_locust/' #~ dirname = '/home/samuel/Documents/projet/DataSpikeSorting/GT 252/tdc_20170623_patch1/' #~ dirname = '/home/samuel/Documents/projet/tridesclous/example/tridesclous_locust/' #~ dirname = '/home/samuel/Documents/projet/tridesclous/example/tridesclous_olfactory_bulb/' #~ dirname = '/home/samuel/Documents/projet/tridesclous/example/tridesclous_olfactory_bulb/' #~ dirname = '/home/samuel/Documents/projet/DataSpikeSorting/kampff/tdc_2015_09_03_Cell9.0/' #~ dirname = '/home/samuel/Documents/projet/DataSpikeSorting/spikesortingtest/tdc_silico_0/' dirname = '/home/samuel/Documents/projet/tridesclous/example/tridesclous_purkinje/' dataio = DataIO(dirname=dirname) cc = catalogueconstructor = CatalogueConstructor(dataio=dataio) print(dataio) print(cc) t0 = time.perf_counter() cc.find_clusters(method='sawchaincut') t1 = time.perf_counter() print('cluster', t1 - t0) #~ exit() print(cc) app = mkQApp() win = CatalogueWindow(catalogueconstructor) win.show() app.exec_()
def test_sawchaincut(): dirname = 'test_cluster' dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) #~ print(dataio) #~ print(cc) t0 = time.perf_counter() cc.find_clusters(method='sawchaincut', print_debug=True) t1 = time.perf_counter() print('cluster', t1 - t0) #~ exit() #~ print(cc) if __name__ == '__main__': app = mkQApp() win = CatalogueWindow(cc) win.show() app.exec_()
def test_pruningshears(): dirname = 'test_cluster' dataio = DataIO(dirname=dirname) print(dataio) cc = CatalogueConstructor(dataio=dataio) #~ cc.extract_some_features(method='pca_by_channel') #~ print(dataio) #~ print(cc) t0 = time.perf_counter() cc.find_clusters(method='pruningshears', print_debug=True) t1 = time.perf_counter() print('cluster', t1 - t0) if __name__ == '__main__': app = mkQApp() win = CatalogueWindow(cc) win.show() app.exec_()
def test_one_decomposition(): dirname = 'test_catalogueconstructor' dataio = DataIO(dirname=dirname) cc = catalogueconstructor = CatalogueConstructor(dataio=dataio) print(dataio) print(cc) t0 = time.perf_counter() #~ cc.extract_some_features(method='global_pca', n_components=7) #~ cc.extract_some_features(method='peak_max') #~ cc.extract_some_features(method='pca_by_channel', n_components_by_channel=3) cc.extract_some_features(method='neighborhood_pca', n_components_by_neighborhood=3, radius_um=500) print(cc.channel_to_features) print(cc.channel_to_features.shape) t1 = time.perf_counter() print('extract_some_features', t1-t0) app = mkQApp() win = CatalogueWindow(catalogueconstructor) win.show() app.exec_()